2025届辽宁省营口市开发区第一高级中学高一上数学期末复习检测试题含解析_第1页
2025届辽宁省营口市开发区第一高级中学高一上数学期末复习检测试题含解析_第2页
2025届辽宁省营口市开发区第一高级中学高一上数学期末复习检测试题含解析_第3页
2025届辽宁省营口市开发区第一高级中学高一上数学期末复习检测试题含解析_第4页
2025届辽宁省营口市开发区第一高级中学高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省营口市开发区第一高级中学高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.2.“密位制”是用于航海方面的一种度量角的方法,我国采用的“密位制”是密位制,即将一个圆周角分为等份,每一个等份是一个密位,那么密位对应弧度为()A. B.C. D.3.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.4.函数,则函数的零点个数为()A.2个 B.3个C.4个 D.5个5.已知函数,则使得成立的的取值范围是()A. B.C. D.6.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q7.设,则A. B.0C.1 D.8.设集合,则=A. B.C. D.9.下列函数中,在区间上是减函数的是()A. B.C. D.10.已知,,且,则的最小值为()A.2 B.3C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________12.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.13.函数,在区间上增数,则实数t的取值范围是________.14.已知函数,则满足的的取值范围是___________.15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______16.已知角的终边上一点P与点关于y轴对称,角的终边上一点Q与点A关于原点O中心对称,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,,点在的延长线上,点是边上的一点,且存在非零实数,使.(Ⅰ)求与的数量积;(Ⅱ)求与的数量积.18.某大学为了解学生对两家餐厅的满意度情况,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行满意指数打分(满意指数是指学生对餐厅满意度情况的打分,分数设置为分.根据打分结果按,分组,得到如图所示的频率分布直方图,其中餐厅满意指数在中有30人.(1)求餐厅满意指数频率分布直方图中的值;(2)利用样本估计总体的思想,估计餐厅满意指数和餐厅满意指数的平均数及方差(同一组中的数据用该组区间中点值作代表);参考公式:,其中为的平均数,分别为对应的频率.(3)如果一名新来同学打算从两家餐厅中选择一个用餐,你建议选择哪个餐厅?说明理由.19.2015年10月5日,我国女药学家屠呦呦获得2015年诺贝尔医学奖.屠呦呦和她的团队研制的抗疟药青蒿素,是科学技术领域的重大突破,开创了定疾治疗新方法,挽救了全球特别是发展中国家数百万人的生命,对促进人类健康、减少病痛发挥了难以估量的作用.当年青蒿素研制的过程中,有一个小插曲:虽然青蒿素化学成分本身是有效的,但是由于实验初期制成的青蒿素药片在胃液中的溶解速度过慢,导致药片没有被人体完全吸收,血液中青蒿素的浓度(以下简称为“血药浓度”)的峰值(最大值)太低,导致药物无效.后来经过改进药片制备工艺,使得青蒿素药片的溶解速度加快,血药浓度能够达到要求,青蒿素才得以发挥作用.已知青蒿素药片在体内发挥作用的过程可分为两个阶段,第一个阶段为药片溶解和进入血液,即药品进入人体后会逐渐溶解,然后进入血液使得血药浓度上升到一个峰值;第二个阶段为吸收和代谢,即进入血液的药物被人体逐渐吸收从而发挥作用或者排出体外,这使得血药浓度从峰值不断下降,最后下降到一个不会影响人体机能的非负浓度值.人体内的血药浓度是一个连续变化的过程,不会发生骤变.现用t表示时间(单位:h),在t=0时人体服用青蒿素药片;用C表示青蒿素的血药浓度(单位:μg/ml).根据青蒿素在人体发挥作用的过程可知,C是t的函数.已知青蒿素一般会在1.5小时达到需要血药浓度的峰值.请根据以上描述完成下列问题:(1)下列几个函数中,能够描述青蒿素血药浓度变化过程的函数的序号是___________.①C②C③C④C(2)对于青蒿素药片而言,若血药浓度的峰值大于等于0.1μg/ml,则称青蒿素药片是合格的.基于(1)中你选择的函数(若选择多个,则任选其中一个),可判断此青蒿素药片___________;(填“合格”、“不合格”)(3)记血药浓度的峰值为Cmax,当C≥12Cmax时,我们称青蒿素在血液中达到“有效浓度”,基于(1)中你选择的函数(若选择多个,则任选其中一个),计算青蒿素在血液中达到20.已知函数求的最小正周期及其单调递增区间;若,求的值域21.已知函数.(Ⅰ)对任意的实数,恒有成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当实数取最小值时,讨论函数在时的零点个数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.2、B【解析】根据弧度制公式即可求得结果【详解】密位对应弧度为故选:B3、D【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题4、D【解析】函数h(x)=f(x)﹣log4x的零点个数⇔函数f(x)与函数y=log4x的图象交点个数.画出函数f(x)与函数y=log4x的图象(如上图),其中=的图像可以看出来,当x增加个单位,函数值变为原来的一半,即往右移个单位,函数值变为原来的一半;依次类推;根据图象可得函数f(x)与函数y=log4x的图象交点为5个∴函数h(x)=f(x)﹣log4x的零点个数为5个.故选D5、C【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.6、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B7、B【解析】详解】故选8、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化9、D【解析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.10、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案12、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等13、【解析】作出函数的图象,数形结合可得结果.【详解】解:函数的图像如图.由图像可知要使函数是区间上的增函数,则.故答案为【点睛】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目.14、【解析】∵在x∈(0,+∞)上是减函数,f(1)=0,∴0<3-x<1,解得2<x<3.15、8【解析】根据“斜二测画法”原理还原出△ABC,利用边长对应关系计算原△ABC的面积即可详解】根据“斜二测画法”原理,还原出△ABC,如图所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面积为SBC×OA4×4=8故答案为8【点睛】本题考查了斜二测画法中原图和直观图面积的计算问题,是基础题16、0【解析】根据对称,求出P、Q坐标,根据三角函数定义求出﹒【详解】解:角终边上一点与点关于轴对称,角的终边上一点与点关于原点中心对称,由三角函数的定义可知,﹒故答案为:0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,从而得到三角形为等腰三角形,可得,由数量积的定义可得.(Ⅱ)根据所给的向量式可得点在的角平分线上,故可得,所以,因为,所以得到.设设,则得到,,根据数量积的定义及运算率可得所求试题解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以点在的角平分线上,又因为点是边上的一点,所以由角平分线性质定理得,所以.因为,所以.设,则,由,得,所以,又,所以点睛:解题时注意在三角形中常见的向量与几何特征的关系:(1)在中,若或,则点是的外心;(2)在中,若,则点是的重心;(3)在中,若,则直线一定过的重心;(4)在中,若,则点是的垂心;(5)在中,若,则直线通过的内心.18、(1),(2)餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别为,(3)答案见解析【解析】(1)根据频率的含义和性质列方程,即可解得:,;(2)根据平均数和方差的定义,然后运算即可;(3)平均数和方差在实际生活中的应用,平均满意度越高,就越会受到欢迎.【小问1详解】因为餐厅满意指数在中有30人,则有:解得:根据总的频率和为1,则有:解得:综上可得:,【小问2详解】设餐厅满意指数的平均数和方差分别为餐厅满意指数的平均数和方差分别为,则有:,,,,综上可得:餐厅满意指数的平均数和方差分别为,;餐厅满意指数的平均数和方差分别,【小问3详解】答案一:餐厅满意指数的平均数为,方差为,餐厅满意指数的平均数为,方差为,因为,所以推荐餐厅;答案二:餐厅满意指数在的频率为,在的频率为,餐厅满意指数在和的频率都为,所以推荐餐厅;(答案不唯一,符合实际情况即可)19、(1)④(2)合格(3)4-【解析】(1)先分析函数Ct(2)作差比较进行判断;(3)令C(t)≥0.1ln2.5【小问1详解】解:根据题意,得函数CtA.函数Ct在[0,1.5)上单调递增,在[1.5,+B.当t=1.5时,函数Ct取得最大值;函数CC.函数Ct选择①:Ct因为C3=0.75-0.3×3=-0.15不满足条件所以①不能描述青蒿素血药浓度变化过程;选择②:Ct当0≤t<15时,Ct当t=1时,函数Ct取得最大值,不满足条件B所以②不能描述青蒿素血药浓度变化过程;选择③:Ct因为0.3e0.3ln所以不满足条件C,所以③不能描述青蒿素血药浓度变化过程;选择④:Ct因为0.2ln且当t≥1.5时,Ct所以Ct即④能描述青蒿素血药浓度变化过程;综上所述,能够描述青蒿素血药浓度变化过程的函数的序号是④.【小问2详解】解:由(1)得:函数④:C因为0.2ln即血药浓度的峰值大于0.1μg/ml,所以此青蒿素药片合格,即答案为:合格;【小问3详解】解:当0≤t<1.5时,令0.2ln所以ln(t+1)2≥即2t2+4t-3≥0,解得t≥即-2+10当t≥1.5时,令0.3ln则3t≥1,解得即1.5≤t≤3;综上所述,青蒿素在血液中达到“有效浓度”的持续时间为3--2+20、(1),,;(2)【解析】由三角函数的周期公式求周期,再利用正弦型函数的单调性,即可求得函数的单调区间;由x的范围求得相位的范围,进而得到,即可求解函数的值域【详解】(1)由题意,知,所以的最小正周期又由,得,所以的单调递增区间为,;(2)因为,所以,则,所以,所以,即所以的值域为【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记型函数的图象和性质,准确计算是解答的此类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论