2025届宁夏银川市兴庆区长庆高中高一上数学期末调研模拟试题含解析_第1页
2025届宁夏银川市兴庆区长庆高中高一上数学期末调研模拟试题含解析_第2页
2025届宁夏银川市兴庆区长庆高中高一上数学期末调研模拟试题含解析_第3页
2025届宁夏银川市兴庆区长庆高中高一上数学期末调研模拟试题含解析_第4页
2025届宁夏银川市兴庆区长庆高中高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届宁夏银川市兴庆区长庆高中高一上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知全集U=R,集合,,则集合()A. B.C. D.3.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天4.函数的图象可能是A. B.C. D.5.函数零点所在的大致区间的A. B.C. D.6.已知函数,,则函数的值域为()A. B.C. D.7.已知数列是首项,公比的等比数列,且,,成等差数列,则公比等于()A. B.C. D.8.已知,,,则a、b、c的大小关系是()A. B.C. D.9.下列函数中,最小正周期为,且图象关于直线对称的是A. B.C. D.10.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点为_________________.12.若直线与互相垂直,则点到轴的距离为__________13.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.14.如果直线与直线互相垂直,则实数__________15.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的对称中心;(2)当时,求函数的值域18.已知函数在区间上单调,当时,取得最大值5,当时,取得最小值-1.(1)求的解析式(2)当时,函数有8个零点,求实数的取值范围19.计算求解(1)(2)已知,,求的值20.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.21.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据充分必要性分别判断即可.【详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.2、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.3、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.4、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:5、B【解析】函数是单调递增函数,则只需时,函数在区间(a,b)上存在零点.【详解】函数,x>0上单调递增,,函数f(x)零点所在的大致区间是;故选B【点睛】本题考查利用函数零点存在性定义定理求解函数的零点的范围,属于基础题;解题的关键是首先要判断函数的单调性,再根据零点存在的条件:已知函数在(a,b)连续,若确定零点所在的区间.6、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B7、A【解析】由等差数列性质得,由此利用等比数列通项公式能求出公比【详解】数列是首项,公比的等比数列,且,,成等差数列,,,解得(舍或故选A【点睛】本题考查等比数列的公比的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用8、D【解析】借助中间量比较即可.详解】解:根据题意,,,,所以故选:D9、B【解析】因为函数的最小正周期是,故先排除选项D;又对于选项C:,对于选项A:,故A、C均被排除,应选B.10、D【解析】根据题意“非有志者不能至也”可知到达“奇伟、瑰怪,非常之观”必是有志之士,故“有志”是到达“奇伟、瑰怪,非常之观”的必要条件,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.12、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.13、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:14、或2【解析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【点睛】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.15、【解析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)化简函数,结合三角函数的图象与性质,即可求解;(2)由,可得,结合三角函数的图象与性质,即可求解;【小问1详解】解:由题意,函数,令,解得,所以函数的对称中心为.【小问2详解】解:因为,可得,当时,即时,可得;当时,即时,可得,所以函数的值域为18、(1);(2).【解析】(1)由函数的最大值和最小值求出,由周期求出ω,由特殊点的坐标出φ的值,可得函数的解析式(2)等价于时,方程有个不同的解.即与有个不同交点,画图数形结合即可解得【详解】(1)由题知,..又,即,的解析式为.(2)当时,函数有个零点,等价于时,方程有个不同的解.即与有个不同交点.由图知必有,即.实数的取值范围是.【点睛】已知函数有零点求参数常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.19、(1);(2).【解析】(1)利用对数运算法则直接计算作答.(2)利用对数换底公式及对数运算法则计算作答.【小问1详解】.【小问2详解】因,,所以.20、(1),;(2).【解析】(1)由函数图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式(2)利用正弦函数的单调性求得f(x)的单调递增区间【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=3所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【点睛】本题主要考查由函数y=Asin(ωx+)的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论