2025届江西省宜春市丰城市第九中学高一数学第一学期期末教学质量检测试题含解析_第1页
2025届江西省宜春市丰城市第九中学高一数学第一学期期末教学质量检测试题含解析_第2页
2025届江西省宜春市丰城市第九中学高一数学第一学期期末教学质量检测试题含解析_第3页
2025届江西省宜春市丰城市第九中学高一数学第一学期期末教学质量检测试题含解析_第4页
2025届江西省宜春市丰城市第九中学高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省宜春市丰城市第九中学高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆C:x2+y2+2x=0与过点A(1,0)的直线l有公共点,则直线l斜率k的取值范围是()A. B.C. D.2.化简:()A B.C. D.3.设函数,若,则A. B.C. D.4.函数在上的部分图象如图所示,则的值为A. B.C. D.5.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是6.设全集,集合,,则()A. B.C. D.7.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2C.0.8 D.0.69.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.1010.已知,则的值为()A B.1C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的函数,满足不等式,则的取值范围是______12.已知函数,方程有四个不相等的实数根(1)实数m的取值范围为_____________;(2)的取值范围为______________13.“”是“”的______条件(请从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选择一个填)14.函数的单调递增区间为________________.15.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________16.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求.(2)若,求实数m的取值范围.18.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的(1)求丙答题正确的概率;(2)求甲、丙都答题错误,且乙答题正确的概率19.已知函数,.(1)对任意的,恒成立,求实数k的取值范围;(2)设,证明:有且只有一个零点,且.20.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:;条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分21.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r=1,设直线方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圆心到直线的距离d1,解得k故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题2、D【解析】利用三角函数诱导公式、同角三角函数的基本关系化简求值即可.【详解】,故选:D3、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质4、C【解析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【详解】由图象可得:,代入可得:本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.5、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B6、B【解析】先求出集合B,再根据交集补集定义即可求出.【详解】,,,.故选:B.7、B【解析】利用诱导公式,的图象变换规律,得出结论【详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B8、C【解析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,,则.故选:C.9、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.10、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题12、①.②.【解析】利用数形结合可得实数m的取值范围,然后利用对数函数的性质可得,再利用正弦函数的对称性及二次函数的性质即求.【详解】作出函数与函数的图象,则可知实数m的取值范围为,由题可知,,∵,∴,即,又,,∴,又函数在上单调递增,∴,即.故答案为:;.【点睛】关键点点睛;本题的关键是数形结合,结合对数函数的性质及正弦函数的性质可得,再利用二次函数的性质即解.13、必要不充分【解析】根据充分条件、必要条件的定义结合余弦函数的性质可得答案.【详解】当时,可得由,不能得到例如:取时,,也满足所以由,可得成立,反之不成立“”是“”的必要不充分条件故答案为:必要不充分14、【解析】函数由,复合而成,求出函数的定义域,根据复合函数的单调性即可得结果.【详解】函数由,复合而成,单调递减令,解得或,即函数的定义域为,由二次函数的性质知在是减函数,在上是增函数,由复合函数的单调性判断知函数的单调递增区间,故答案为.【点睛】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!15、①③④【解析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④16、,答案不唯一【解析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用集合的交集运算即可求解;(2)由集合的基本运算得出集合的包含关系,进而求出实数m的取值范围.【小问1详解】解:时,;又;【小问2详解】解:由得所以解得:所以实数m的取值范围为:18、(1)(2)【解析】(1)设丙答对这道题的概率为,利用对立事件和相互独立事件概率公式,即可求解;(2)由相互独立事件概率乘法公式,即可求解.【小问1详解】记甲、乙、丙3人独自答对这道题分别为事件,设丙答对题的概率,乙答对题的概率,由于每人回答问题正确与否是相互独立的,因此是相互独立事件.根据相互独立事件同时发生的概率公式,得,解得,所以丙对这道题的概率为【小问2详解】甲、丙都答题错误,且乙答题正确的概率为甲、乙、丙三人都回答错误的概率为19、(1);(2)证明见解析.【解析】(1)利用的单调性以及对数函数的单调性,即可求出的范围(2)对进行分类讨论,分为:和,利用零点存在定理和数形结合进行分析,即可求解【详解】解:(1)因为是增函数,是减函数,所以在上单调递增.所以的最小值为,所以,解得,所以实数k的取值范围是.(2)函数的图象在上连续不断.①当时,因为与在上单调递增,所以在上单调递增.因为,,所以.根据函数零点存在定理,存在,使得.所以在上有且只有一个零点.②当时,因为单调递增,所以,因为.所以.所以在上没有零点.综上:有且只有一个零点.因为,即,所以,.因为在上单调递减,所以,所以.【点睛】关键点睛:对进行分类讨论时,①当时,因为与在上单调递增,再结合零点存在定理,即可求解;②当时,恒成立,所以,在上没有零点;最后利用,得到,然后化简可求解。本题考查函数的性质,函数的零点等知识;考查学生运算求解,推理论证的能力;考查数形结合,分类与整合,函数与方程,化归与转化的数学思想,属于难题20、(1),(2)答案不唯一,具体见解析【解析】(1)根据正弦函数的单调增区间建立不等式求解即可得出;(2)选①代入,化简,令,转化为二次函数求值域即可,选择条件②代入化简,令,根据正弦函数的图象与性质求最值即可求解.【小问1详解】函数的单调增区间为()由,,解得,,所以的单调增区间为,【小问2详解】选择条件①:令,因为,所以所以所以,因为在区间上单调递增,所以当时,取得最大值所以当时,取得最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论