2025届江西省抚州市七校高一数学第一学期期末检测试题含解析_第1页
2025届江西省抚州市七校高一数学第一学期期末检测试题含解析_第2页
2025届江西省抚州市七校高一数学第一学期期末检测试题含解析_第3页
2025届江西省抚州市七校高一数学第一学期期末检测试题含解析_第4页
2025届江西省抚州市七校高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省抚州市七校高一数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,将的图象向右平移个单位长度后得到的函数图象关于轴对称,则的最小值为()A. B.C. D.2.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.3.设全集为,集合,,则()A. B.C. D.4.已知函数的值域为,则实数a的取值范围是()A. B.C. D.5.函数的图像大致为()A. B.C. D.6.已知角终边上A点的坐标为,则()A.330 B.300C.120 D.607.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数8.在半径为2的圆上,一扇形的弧所对的圆心角为,则该扇形的面积为()A. B.C. D.9.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.10.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,(1)______(2)若方程有4个实数根,则实数的取值范围是______12.已知函数,若有解,则m的取值范围是______13.求方程在区间内的实数根,用“二分法”确定的下一个有根的区间是____________.14.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________15.已知函数在上的最大值为2,则_________16.“”是“”的______条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大18.已知函数的定义域是,设,(1)求的定义域;(2)求函数的最大值和最小值.19.已知.(1)求的值;(2)若,求的值.20.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围21.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】观察图象可得函数的最大值,最小值,周期,由此可求函数的解析式,根据三角函数变换结论,求出平移后的函数解析式,根据平移后函数图象关于轴对称,列方程求的值,由此确定其最小值.【详解】根据函数的部分图象,可得,,∴因,可得,又,求得,故将的图象向右平移个单位长度后得到的函数的图象,因为的图象关于直线轴对称,故,即,故的最小值为,故选:C2、D【解析】,又,故选D考点:扇形弧长公式3、B【解析】先求出集合B的补集,再根据集合的交集运算求得答案.【详解】因为,所以,故,故选:B.4、B【解析】令,要使已知函数的值域为,需值域包含,对系数分类讨论,结合二次函数图像,即可求解.【详解】解:∵函数的值域为,令,当时,,不合题意;当时,,此时,满足题意;当时,要使函数的值域为,则函数的值域包含,,解得,综上,实数的取值范围是.故选:B【点睛】关键点点睛:要使函数的值域为,需要作为真数的函数值域必须包含,对系数分类讨论,结合二次函数图像,即可求解.5、B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.6、A【解析】根据特殊角的三角函数值求出点的坐标,再根据任意角三角函数的定义求出的值.【详解】,,即,该点在第四象限,由,,得.故选:A.7、A【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A8、D【解析】利用扇形的面积公式即可求面积.【详解】由题设,,则扇形的面积为.故选:D9、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.10、C【解析】由题意得:或,故选C.考点:直线平行的充要条件二、填空题:本大题共6小题,每小题5分,共30分。11、①-2②.【解析】先计算出f(1),再根据给定的分段函数即可计算得解;令f(x)=t,结合二次函数f(x)性质,的图象,利用数形结合思想即可求解作答.【详解】(1)依题意,,则,所以;(2)函数的值域是,令,则方程在有两个不等实根,方程化为,因此,方程有4个实数根,等价于方程在有两个不等实根,即函数的图象与直线有两个不同的公共点,在同一坐标系内作出函数的图象与直线,而,如图,观察图象得,当时,函数与直线有两个不同公共点,所以实数的取值范围是.故答案为:-2;12、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.13、【解析】根据二分法的步骤可求得结果.【详解】令,因为,,,所以下一个有根的区间是.故答案为:14、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.15、1【解析】先求导可知原函数在上单调递增,求出参数后即可求出.【详解】解:在上在上单调递增,且当取得最大值,可知故答案为:116、充分不必要【解析】解方程,即可判断出“”是“”的充分不必要条件关系.【详解】解方程,得或,因此,“”是“”的充分不必要条件.故答案为充分不必要.【点睛】本题考查充分不必要条件的判断,一般转化为集合的包含关系来判断,考查推理能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大,最大收益为282万元.【点睛】本题考查了函数在实际问题中的应用,分段函数模型的应用,二次函数型求最值的应用,属于基础题.18、(1)(2)最大值为,最小值为【解析】(1)根据的定义域列出不等式即可求出;(2)可得,即可求出最值.【小问1详解】的定义域是,,因为的定义域是,所以,解得于是定义域为.【小问2详解】设.因为,即,所以当时,即时,取得最小值,值为;当时,即时,取得最大值,值为.19、(1);(2).【解析】(1)根据三角函数的基本关系式,化简得,即可求解;(2)由(1)知,根据三角函数诱导公式,化简得到原式,结合三角函数的基本关系式,即可求解.【详解】(1)根据三角函数的基本关系式,可得,解得.(2)由(1)知,又由.因为,且,所以,可得,所以20、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.21、(1)见解析;(2)【解析】(1)将函数化简为,令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论