




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
期末真题必刷常考60题(34个考点专练)一.幂的乘方与积的乘方(共1小题)1.(2022秋•民权县期末)如果am=3,an=5,那么a2m+n=45.【分析】分别根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:∵am=3,an=5,∴a2m+n=(am)2×an=32×5=9×5=45.故答案为:45.【点评】本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.二.单项式乘单项式(共1小题)2.(2022秋•花都区期末)计算a2•(﹣6ab)的结果是﹣2a3b.【分析】根据单项式乘单项式的运算法则进行求解即可.【解答】解:a2•(﹣6ab)=×(﹣6)a2+1b=﹣2a3b.故答案为:﹣2a3b.【点评】本题主要考查单项式乘单项式,解答的关键是对单项式乘单项式的运算法则的掌握.三.单项式乘多项式(共1小题)3.(2022秋•平昌县期末)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.四.多项式乘多项式(共2小题)4.(2022秋•泸县校级期末)若(x﹣3)(x+5)=x2+mx﹣15,则m的值为()A.﹣8 B.2 C.﹣2 D.﹣5【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x﹣3)(x+5)=x2+2x﹣15=x2+mx﹣15,∴m=2.故选:B.【点评】本题主要考查了多项式乘以多项式,恒等原理等,熟练掌握多项式乘以多项式的法则,恒等的两个代数式对应项系数相等,是求解的关键.5.(2022秋•忻府区期末)如图,从一个长方形铁皮中剪去一个小正方形,长方形的长为(2a+b)米,宽为(a+b)米,正方形的边长为a米.(1)求剩余铁皮的面积;(2)当a=3,b=2时,求剩余铁皮的面积.【分析】(1)用长方形的面积减去正方形的面积进行计算即可得出答案.(2)将a=3,b=2代入(1)中所求式子即可得出答案.【解答】解:(1)∵从一个长方形铁皮中剪去一个小正方形,∴剩余铁皮的面积为:(a+b)(2a+b)﹣a×a,化简得:a2+3ab+b2,即剩余铁皮的面积为a2+3ab+b2平方米;(2)将a=3,b=2代入a2+3ab+b2,得32+3×3×2+22=31,∴剩余铁皮的面积为31平方米.【点评】本题考查了单项式乘多项式的实际应用,解题关键在于正确计算.五.完全平方公式的几何背景(共2小题)6.(2022秋•宁乡市期末)【阅读理解】若x满足(32﹣x)(x﹣12)=100,求(32﹣x)2+(x﹣12)2的值.解:设32﹣x=a,x﹣12=b,则(32﹣x)(x﹣12)=a•b=100,a+b=(32﹣x)+(x﹣12)=20,(32﹣x)2+(x﹣12)2=a2+b2=(a+b)2﹣2ab=202﹣2×100=200,我们把这种方法叫做换元法.利用换元法达到简化方程的目的,体现了转化的数学思想.【解决问题】(1)若x满足(100﹣x)(x﹣95)=5,则(100﹣x)2+(x﹣95)2=15;(2)若x满足(2023﹣x)2+(x﹣2000)2=229,求(2023﹣x)(x﹣2000)的值;(3)如图,在长方形ABCD中,AB=24cm,点E,F是边BC,CD上的点,EC=12cm,且BE=DF=xcm,分别以FC,CB为边在长方形ABCD外侧作正方形CFGH和CBMN,若长方形CBQF的面积为320cm2,求图中阴影部分的面积和.【分析】(1)根据阅读材料的方法,设100﹣x=a,x﹣95=b,则ab=5,而a+b=5,根据a2+b2=(a+b)2﹣2ab,即可求解;(2)设2023﹣x=a,x﹣2000=b,则a2+b2=229,而a+b=23,最后根据完全平方公式,即可求解;(3)设CF=a,BC=b,根据长方形CBQF的面积为320cm2,列方程同理可得结论.【解答】解:(1)根据阅读材料的方法,设100﹣x=a,x﹣95=b,则ab=5,而a+b=5,∴(100﹣x)2+(x﹣95)2=a2+b2=(a+b)2﹣2ab=52﹣2×5=15;故答案为:15;(2)设2023﹣x=a,x﹣2000=b,则a2+b2=229,而a+b=23,∵a2+b2=(a+b)2﹣2ab,∴2ab=(a+b)2﹣(a2+b2)=232﹣229=529﹣229=300,∴ab=150,即(2023﹣x)(x﹣2000)=150;(3)由题意得:CF=CD﹣DF=24﹣x,BC=CE+BE=x+12,设CF=a,BC=b,∴a+b=24﹣x+x+12=36,∵长方形CBQF的面积为320cm2,∴(24﹣x)(12+x)=ab=320,∴图中阴影部分的面积和=(24﹣x)2+(x+12)2=a2+b2=(a+b)2﹣2ab=362﹣2×320=656(cm2).【点评】本题考查了完全平方公式,换元等知识,解题关键是灵活利用换元思想,熟练掌握完全平方公式.7.(2022秋•船营区校级期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是a2+b2=(a+b)2﹣2ab;(2)如图2所示的大正方形,是由四个三边长分别为a、b、c的全等的直角三角形(a、b为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.【分析】(1)阴影部分是两个正方形的面积和,阴影部分也可以看出大正方形的面积减去两个长方形的面积即可得出答案;(2)中间的是边长为c的正方形,因此面积为c2,也可以从边长为(a+b)正方形面积减去四个直角三角形的面积即可;(3)利用(2)中的结论,代入计算即可.【解答】解(1)方法一:阴影部分是两个正方形的面积和,即a2+b2;方法二:阴影部分也可以看作边长为(a+b)的面积,减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab,由两种方法看出a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(2)中间正方形的边长为c,因此面积为c2,也可以看作从边长为(a+b)的面积减去四个两条直角边分别a、b的面积,即c2=(a+b)2﹣2ab,也就是c2=a2+b2,所以c2=a2+b2;(3)∵a+b=17,ab=60,∴c2=a2+b2=(a+b)2﹣2ab=172﹣2×60=169,∴c=13,答:斜边的长为13.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确应用的前提,将公式进行适当的变形是解决问题的关键.六.完全平方式(共2小题)8.(2022秋•江汉区期末)已知y2+my+9是完全平方式,则m=±6.【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵y2+my+9是完全平方式,∴y2+my+9=(y±3)2=y2±6y+9,∴m=±6,∴m=±6.故答案为:±6.【点评】本题主要考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(2022秋•离石区期末)在课后服务课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为α的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.【发现】(1)根据图2,写出一个我们熟悉的数学公式(a+b)2=a2+2ab+b2.【应用】(2)根据(1)中的数学公式,解决如下问题:①已知:a+b=7,a2+b2=25,求ab的值.②如果一个长方形的长和宽分别为(8﹣x)和(x﹣2),且(8﹣x)2+(x﹣2)2=20,求这个长方形的面积.【分析】(1)由图形得出完全平方公式即可;(2)①根据完全平方公式计算出ab的值即可;②利用完全平方公式求解即可.【解答】解:(1)由图2可知,(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2;(2)①∵a+b=7,∴(a+b)2=a2+2ab+b2=49,∵a2+b2=25,∴2ab=24,∴ab=12;②由(1)知,[(8﹣x)+(x﹣2)]2=(8﹣x)2+2(8﹣x)(x﹣2)+(x﹣2)2=36,∵(8﹣x)2+(x﹣2)2=20,∴2(8﹣x)(x﹣2)=16,∴(8﹣x)(x﹣2)=8,故这个长方形的面积为8.【点评】本题主要考查完全平方公式,熟练掌握完全平方公式并灵活运用是解题的关键.七.因式分解运用公式法(共1小题)10.(2022秋•湖里区期末)下列能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2﹣2x﹣1 C.x2﹣4x+4 D.x2﹣y2【分析】利用公式法进行分解,逐一判断即可解答.【解答】解:A、x2+2x+1=(x+1)2,故A不符合题意;B、x2﹣2x+1=(x﹣1)2,故B不符合题意;C、x2﹣4x+4=(x﹣2)2,故C符合题意;D、x2﹣y2=(x+y)(x﹣y),故D不符合题意;故选:C.【点评】本题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解题的关键.八.提公因式法与公式法的综合运用(共1小题)11.(2023春•余江区期末)分解因式:(1)3a2﹣6ab+3b2;(2)x2(m﹣2)+y2(2﹣m).【分析】(1)先提公因式,然后再利用完全平方公式继续分解即可;(2)先提公因式,然后再利用平方差公式继续分解即可.【解答】解:(1)3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2;(2)x2(m﹣2)+y2(2﹣m)=(m﹣2)(x2﹣y2)=(m﹣2)(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.九.因式分解十字相乘法等(共1小题)12.(2022秋•沂水县期末)下列因式分解结果正确的是()A.﹣a2+4a=﹣a(a+4) B.a2b﹣2ab+b=b(a﹣1)2 C.9a2﹣b2=(9a+b)(9a﹣b) D.a2﹣4a﹣5=(a﹣1)(a+5)【分析】A.根据因式分解﹣提取公因式法进行计算即可得出答案;B.根据提公因式法与公式法的综合运用进行计算即可得出答案;C.根据因式分解﹣公式法进行计算即可得出答案;D.根据因式分解﹣十字相乘法进行计算即可得出答案.【解答】解:A.因为﹣a2+4a=﹣a(a﹣4),所以A选项因式分解结果不正确,故A选项不符合题意;B.因为a2b﹣2ab+b=b(a﹣1)2,所以B选项因式分解结果正确,故B选项符合题意;C.因为9a2﹣b2=(3a+b)(3a﹣b),所以C选项因式分解结果不正确,故C选项不符合题意;D.因为a2﹣4a﹣5=(a+1)(a﹣5),所以D选项因式分解结果不正确,故D选项不符合题意.故选:B.【点评】本题主要考查了因式分解,熟练掌握因式分解的方法进行求解是解决本题的关键.一十.分式有意义的条件(共1小题)13.(2022秋•青云谱区期末)若分式有意义,则x的取值范围是x≠2.【分析】根据分式有意义的条件计算即可.【解答】解:∵分式有意义,∴x﹣2≠0,∴x≠2.故答案为:x≠2.【点评】本题主要考查了分式有意义的条件,准确计算是解题的关键.一十一.分式的基本性质(共1小题)14.(2022秋•岳阳楼区期末)把下列分式中x,y的值都同时扩大到原来的5倍,那么分式的值保持不变的是()A. B. C. D.【分析】根据分式的基本性质,x,y的值都同时扩大到原来的5倍,求出每个式子的结果,看结果是否等于原式.【解答】解:A、,分式的值保持不变,符合题意;B、,分式的值改变,不符合题意;C、,分式的值改变,不符合题意;D、,分式的值改变,不符合题意;故选:A.【点评】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.一十二.分式的化简求值(共1小题)15.(2022秋•汉阳区校级期末)先化简,再求值:(2a﹣)÷,其中a=2.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可.【解答】解:原式=÷=•=•=2a(a+2)=2a2+4a,当a=2时,原式=2×22+4×2=8+8=16.【点评】本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.一十三.零指数幂(共1小题)16.(2022秋•龙江县期末)若(x﹣4)0=1成立,则x应满足的条件是x≠4.【分析】根据零指数幂的底数不能为零,即可得到答案.【解答】解:根据题意可得:x﹣4≠0,解得:x≠4,故答案为:x≠4.【点评】本题考查了零指数幂,利用零指数幂的底数不能为零得出不等式是解题的关键.一十四.分式方程的解(共1小题)17.(2022秋•五常市期末)若关于x的方程无解,则m的值为0或4.【分析】求解方程可得x=,再由方程无解可得m﹣4=0,即可求m的值.【解答】解:,2(2x+1)=mx,4x+2=mx,(4﹣m)x=﹣2,∵方程无解,可分为以下两种情况:①分式方程没有意义时,x=0或﹣,此时m=0,②整式不成立时,4﹣m=0,∴m=4,故答案为:0或4.【点评】本题考查分式方程的解,熟练掌握分式方程的解法,理解方程无解的意义是解题的关键.一十五.解分式方程(共2小题)18.(2022秋•南昌期末)嘉淇准备完成题目:解分式方程:,发现数字◆印刷不清楚.(1)他把“◆”猜成5,请你解方程:;(2)他妈妈说:“你猜错了,我看到该题目的正确答案是此分式方程无解.”通过计算说明原题中“◆”是几?【分析】(1)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)设原题中“◆”是a,分式方程变形后去分母转化为整式方程,由分式方程无解得到x=3,代入整式方程计算即可求出a的值.【解答】解:(1)方程整理得:=2+,去分母得:x=2(x﹣3)+5,解得:x=1,检验:把x=1代入得:x﹣3≠0,∴分式方程的解为x=1;(2)设原题中“◆”是a,方程变形得:=2+,去分母得:x=2(x﹣3)+a,由分式方程无解,得到x=3,把x=3代入整式方程得:a=3.【点评】此题考查了解分式方程,以及分式方程的解,解分式方程利用了转化的思想,注意要检验.19.(2022秋•泰山区校级期末)解分式方程.(1);(2).【分析】(1)先把分式方程两边同时乘以(2﹣x),转化成整式方程,求出整式方程的解,再进行检验即可;(2)先把分式方程两边同时乘以(x2﹣1),转化成整式方程,求出整式方程的解,再进行检验即可.【解答】解:(1)﹣1=1﹣x﹣3(2﹣x),﹣1=1﹣x﹣6+3x,﹣2x=﹣4,x=2,当x=2时,x﹣2=0,∴x=2是原方程的增根,此方程无解;(2)x(x+1)﹣(2x﹣1)=x2﹣1,x2+x﹣2x+1=x2﹣1,﹣x=﹣2,x=2当x=2,x﹣1≠0,x2﹣1≠0,∴x=2是方程的解.【点评】本题考查了解分式方程,掌握转化思想,把分式方程转化为整式方程求解是关键.一十六.分式方程的增根(共1小题)20.(2022秋•岳阳楼区期末)若关于x的分式方程有增根,则k的值是﹣2.【分析】先将方程两边都乘以x+3得到整式方程,再将分式方程的增根x=3代入整式方程求解可得.【解答】解:两边都乘以x+3,得:x+1=k①,∵分式方程有增根,∴增根为x=﹣3,将x=﹣3代入①,得:﹣3+1=k,解得k=﹣2,故答案为:﹣2.【点评】本题考查了分式方程的增根,把分式方程的增根代入整式方程得出关于k的一元一次方程是解题关键.一十七.由实际问题抽象出分式方程(共1小题)21.(2022秋•新化县期末)甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x人捐款,则所列方程是()A.=+1 B.=+1 C.=﹣1 D.=﹣1【分析】设甲单位有x人捐款,乙单位有(x+50)人捐款,根据甲单位人均捐款数比乙单位多1元列方程.【解答】解:设甲单位有x人捐款,则乙单位有(x+50)人捐款,由题意,得=+1.故选:A.【点评】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.一十八.分式方程的应用(共2小题)22.(2022秋•孝南区期末)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【分析】(1)设第一次购进冰墩墩x个,由题意:第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.列出分式方程,解方程即可;(2)设每个冰墩墩的标价为a元,由题意:全部销售完后的利润率不低于20%,列出一元一次不等式,解不等式即可.【解答】解:(1)设第一次购进冰墩墩x个,则第二次购进冰墩墩2x个,根据题意得:=﹣10,解得:x=200,经检验,x=200是原方程的解,且符合题意,答:该商家第一次购进冰墩墩200个.(2)由(1)知,第二次购进冰墩墩的数量为400个.设每个冰墩墩的标价为a元,由题意得:(200+400)a≥(1+20%)(22000+48000),解得:a≥140,答:每个冰墩墩的标价至少为140元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.23.(2022秋•岳阳期末)2022年10月12日“天宫课堂”第三课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B两款物理实验套装,其中A款套装单价比B款套装单价贵20%,用7200元购买的A款套装数量比用5000元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.【分析】设B款套装的单价是x元,则A款套装的单价是(1+20%)x元,根据题意列出关于x的分式方程,解方程后检验即可得出结论.【解答】解:设B款套装的单价是x元,则A款套装的单价是(1+20%)x元,由题意得:,解得x=200,经检验,x=200是原方程的解,且符合题意,∴(1+20%)x=240.答:A款套装的单价是240元、B款套装的单价是200元.【点评】本题考查了分式方程的应用,解题的关键是:找准等量关系,正确列出分式方程.一十九.三角形的角平分线、中线和高(共1小题)24.(2022秋•岳阳县期末)下列图形中AD是△ABC的高的是()A. B. C. D.【分析】利用三角形高的定义进行解答即可.【解答】解:A、AD不是△ABC的高,故此选项不合题意;B、AD不是△ABC的高,故此选项不合题意;C、AD不是△ABC的高,故此选项不合题意;D、AD是△ABC的高,故此选项符合题意;故选:D.【点评】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.二十.三角形三边关系(共1小题)25.(2022秋•宜春期末)若一个三角形的两边长分别为2和4,则第三边长可以是()A.2 B.5 C.6 D.7【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边求出第三边长的范围,即可得到答案.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.2,5,6,7,只有5满足不等式.故选:B.【点评】本题考查了三角形的三边关系,解题的关键熟练根据三角形的三边关系求得第三边的取值范围.二十一.三角形内角和定理(共3小题)26.(2022秋•海珠区校级期末)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB=25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线,∴∠OAB+∠OBA=(∠BAC+∠ABC),在△ABC中,∠C=70°,∴∠BAC+∠ABC=180°﹣∠C=110°,∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°,∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线,∴∠CAE=∠CAB=25°,∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°,∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.27.(2022秋•邢台期末)材料阅读:如图①所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”.解决问题:(1)观察“规形图”,试探究∠BDC与∠A,∠B,∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图②,把一块三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A=40°,则∠ABD+∠ACD=50°.Ⅱ.如图③,BD平分∠ABP,CD平分∠ACP,若∠A=40°,∠BPC=130°,求∠BDC的度数.【分析】(1)连接AD并延长至点F,根据三角形外角性质即可得到∠BDC与∠A,∠B,∠C之间的数量关系;(2)Ⅰ、由(1)可得,∠BDC=∠ABD+∠ACD+∠A,再根据∠A=40°,∠D=90°,即可得出∠ABD+∠ACD的度数;Ⅱ、根据(1),可得∠BPC=∠BAC+∠ABP+∠ACP,∠BDC=∠BAC+∠ABD+∠ACD,再根据BD平分∠ABP,CD平分∠ACP,即可得出∠BDC的度数.【解答】解:(1)如图①,连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)Ⅰ.由(1)可得,∠BDC=∠ABD+∠ACD+∠A;又∵∠A=40°,∠D=90°,∴∠ABD+∠ACD=90°﹣40°=50°,故答案为:50;Ⅱ.由(1),可得∠BPC=∠BAC+∠ABP+∠ACP,∠BDC=∠BAC+∠ABD+∠ACD,∴∠ABP+∠ACP=∠BPC﹣∠BAC=130°﹣40°=90°,又∵BD平分∠ABP,CD平分∠ACP,∴∠ABD+∠ACD=(∠ABP+∠ACP)=45°,∴∠BDC=45°+40°=85°.【点评】本题考查的是三角形内角和定理以及三角形外角性质的运用,熟知三角形的内角和等于180°是解答此题的关键.28.(2022秋•二七区校级期末)(1)如图,把△ABC沿DE折叠,使点A落在点A1处,试探究∠1、∠2与∠A的关系;(2)如图2,若∠1=140°,∠2=80°,作∠ABC的平分线BN,与∠ACB的外角平分线CN交于点N,求∠BNC的度数;(3)如图3,若点A1落在△ABC内部,作∠ABC,∠ACB的平分线交于点A1,此时∠1,∠2,∠BA1C满足怎样的数量关系?并给出证明过程.【分析】(1)由折叠的性质得∠AED=∠A1ED,∠ADE=∠A1DE,再根据平角的定义得到,,根据三角形外角的性质可得,由此即可得出结论;(2)先根据(1)的结论求出∠A=30°,再由角平分线的定义和三角形外角的性质推出即可;(3)先推出,∠AED=∠A1ED=90°﹣∠2,再由三角形外角的性质推出,利用角平分线的定义和三角形内角和定理推出即可得到结论.【解答】解:(1)∠1=2∠A+∠2,理由如下:由折叠的性质可知∠AED=∠A1ED,∠ADE=∠A1DE,∴,∠2=2∠AED﹣180°,∴,∵∠A+∠AED=∠EDB=∠1+∠A1DE,∴,∴∠1=2∠A+∠2;(2)∵∠1=2∠A+∠2,∠1=140°,∠2=80°,∴∠A=30°,∵∠ABC的平分线BN,与∠ACB的外角平分线CN交于点N,∴,∵∠A+∠ABC=∠ACH,∴∠A+2∠NBC=2∠NCH,又∵∠N+∠NBC=∠NCH,∴∠A+2∠NBC=2∠N+2∠NBC,∴;(3)解:∠1+∠2=4∠BA1C﹣360°,理由如下;由折叠的性质可知∠AED=∠A1ED,∠ADE=∠A1DE,∴,,∵∠A+∠ADE=∠CED=∠A1ED+∠2,∴,∴,∵∠ABC,∠ACB的平分线交于点A1,∴,∵∠ABC+∠ACB=180°﹣∠A,∴,∴,∴,∴∠1+∠2=4∠BA1C﹣360°.【点评】本题主要考查了折叠的性质,角平分线的定义,三角形内角和定理,三角形外角的性质,熟知三角形内角和定理和三角形外角的性质是解题的关键.二十二.三角形的外角性质(共2小题)29.(2022秋•金水区校级期末)将一副三角板按照如图方式摆放,则∠CBE的度数为()A.90° B.100° C.105° D.110°【分析】根据三角板的性质得出∠ACB=60°,∠BAC=45°,再利用外角的性质计算即可.【解答】解:由题意可得:∠ACB=60°,∠BAC=45°,∴∠CBE=∠ACB+∠BAC=60°+45°=105°,故选:C.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.30.(2022秋•龙亭区校级期末)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ADC的度数.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°,∴∠ADC=180°﹣∠A﹣∠ACD=80°.【点评】本题考查三角形外角性质,掌握外角性质是解题关键.二十三.全等三角形的性质(共1小题)31.(2022秋•宛城区校级期末)如图,点A在DE上,△ABC≌△EDC,若∠BAC=55°,则∠ACE的大小为70°.【分析】根据全等三角形的性质得出∠E=∠BAC=55°,CE=CA,根据等腰三角形的性质以及三角形内角和定理可得∠ACE=180°﹣∠CAE﹣∠E=70°.【解答】解:∵△ABC≌△EDC,∠BAC=55°,∴∠E=∠BAC=55°,CE=CA,∴∠CAE=∠E=55°,∴∠ACE=180°﹣∠CAE﹣∠E=70°.故答案为:70°.【点评】本题考查了全等三角形的性质,等腰三角形的性质以及三角形内角和定理,掌握全等三角形的对应边相等,对应角相等是解题的关键.二十四.全等三角形的判定(共4小题)32.(2022秋•庄河市期末)工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【分析】已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.【解答】解:做法中用到的三角形全等的判定方法是SSS证明如下:由题意得,PN=PM,在△ONP和△OMP中,,∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选:A.【点评】本题考查全等三角形在实际生活中的应用.对于难以确定角平分线的情况,利用全等三角形中对应角相等,从而轻松确定角平分线.33.(2022秋•克什克腾旗期末)下列条件能判定△ABC≌△DEF的一组是()A.∠A=∠D,∠C=∠F,AC=DF B.AB=DE,BC=EF,∠A=∠D C.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,△ABC的周长等于△DEF的周长【分析】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,结合选项逐一检验.【解答】解:A、∠A=∠D,∠C=∠F,AC=DF符合ASA,能判定两三角形全等,故选项正确;B、AB=DE,BC=EF,∠A=∠D是SSA,不能判定两三角形全等,故选项错误;C、∠A=∠D,∠B=∠E,∠C=∠F是AAA,不能判定两三角形全等,故选项错误;D、AB=DE,△ABC的周长等于△DEF的周长,三边不可能相等,故选项错误.故选:A.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.34.(2023春•凤城市期末)如图,在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.∠A=∠D C.AB∥DE D.AC=DF【分析】已知AB=DE,BC=EF,只需再找一个夹角或者一条边相等,即可判定△ABC≌△DEF.【解答】解:A、可根据SAS判定△ABC≌△DEF,故本选项不符合题意;B、不能根据SSA判定△ABC≌△DEF,故本选项符合题意;C、根据AB∥DE,可得∠B=∠DEF,可根据SAS判定△ABC≌△DEF,故本选项不符合题意;D、可根据SSS判定△ABC≌△DEF,故本选项不符合题意.故选:B.【点评】本题考查三角形全等的判定方法,掌握判定两个三角形全等的一般方法是解题的关键.35.(2022秋•五华区期末)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点C在直线l上.点P从点A出发,在三角形边上沿A→C→B的路线向终点B运动;点Q从B点出发,在三角形边上沿B→C→A的路线向终点A运动.点P和Q分别以1单位/秒和2单位秒的速度同时开始运动,在运动过程中,若有一点先到达终点时,该点停止运动,另一个点也停止运动.分别过点P和Q作PE⊥l于点E,QF⊥l于点F,当△PEC与△CFQ全等时,点P的运动时间为2或秒.【分析】分四种情况,点P在AC上,点Q在BC上;点P、Q都在AC上;点P到BC上,点Q在AC上;点Q到A点,点P在BC上,根据全等三角形的对应边相等建立方程求解即可.【解答】解:∵△PEC与△CFQ全等,∴斜边PC=斜边CQ,分四种情况:当点P在AC上,点Q在BC上,如图:∵CP=CQ,∴6﹣t=8﹣2t,∴t=2,当点P、Q都在AC上时,此时P、Q重合,如图:∵CP=CQ,∴6﹣t=2t﹣8,∴t=,当点P到BC上,点Q在AC上时,如图:∵CP=CQ,∴t﹣6=2t﹣8,∴t=2,不符合题意,当点Q到A点,点P在BC上时,如图:∵CQ=CP,∴6=t﹣6,∴t=12(舍去),综上所述:点P的运动时间等于2或时,△PEC与△CFQ全等,故答案为:2或.【点评】本题考查了全等三角形的判定,分情况讨论是解题的关键.二十五.全等三角形的判定与性质(共6小题)36.(2022秋•南安市期末)如图,已知点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠A=∠D.【分析】由BE=CF,可得BC=EF,则利用SSS可判定△ABC≌△DEF,从而有∠A=∠D.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠A=∠D.【点评】本题主要考查全等三角形的判定与性质,解答的关键是找到图中的公共边EC,得出BC=EF.37.(2022秋•海珠区校级期末)已知:如图,F、C是AD上的两点,且AB=DE,AB∥DE,AF=CD.求证:(1)△ABC≌△DEF;(2)BC∥EF.【分析】(1)根据AB∥DE,得∠A=∠D,由AF=CD,可得AC=DF,通过SAS即可证明△BAC≌△EDF;(2)由全等三角形的性质得∠ACB=∠DFE,从而BC∥EF.【解答】证明:(1)∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,在△BAC和△EDF中,,∴△BAC≌△EDF(SAS);(2)∵△BAC≌△EDF,∴∠ACB=∠DFE,∴BC∥EF.【点评】本题主要考查了全等三角形的判定与性质,平行线的判定与性质等知识,熟练掌握平行线的判定与性质是解题的关键.38.(2022秋•日照期末)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF,垂足为F.(1)求证:△ABC≌△ADE;(2)若AC=10,求四边形ABCD的面积;(3)求∠FAE的度数.【分析】(1)由“SAS“可证△ABC≌△ADE;(2)由全等三角形的性质可得S△ABC=S△ADE,由面积关系可求解;(3)由等腰三角形的性质和全等三角形的性质可得∠CAF=∠FCA=45°,即可求解.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAD﹣∠CAD=∠CAE﹣∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)∵△ABC≌△ADE,∴S△ABC=S△ADE,∴S四边形ABCD=S△ABC+S△ACD=S△ADE+S△ACD=S△ACE,∵AC=AE=10,∴S四边形ABCD=S△ACE=×10×10=50;(3)∵∠CAE=90°,AC=AE,∴∠E=45°,∵△ABC≌△ADE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CAF=∠FCA=45°,∴∠FAE=135°.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是本题的关键.39.(2022秋•岳阳期末)如图,在△ABC和△ADE中,∠BAD=∠EAC,AB=AD,AC=AE.过A作AG⊥DE于点G,BC的延长线与DE交于点F,连接AF.(1)若DE=12,CF=2,则BF=14;(2)若,AG=6,则四边形ACFE的面积为33.【分析】(1)先根据“SAS”证明△ABC≌△ADE,再根据全等三角形的对应边相等得出答案;(2)作AH⊥BC,再根据(1)得出△ABC≌△ADE,进而证明△AHC≌△AGE,然后证明△AHF≌△AGF,即可得出S四边形ACFE=S△AHC+S△ACF+S△AFG=S△AHF+S△AFG=2S△AFG,代入数值计算得出答案.【解答】解:(1)∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴BC=DE=12.∵CF=2,∴BF=BC+CF=12+2=14.故答案为:14;(2)作AH⊥BC,交BC于点H,由(1)得△ABC≌△ADE,∴AC=AE,AH=AG,∴Rt△AHC≌Rt△AGE,Rt△AHF≌Rt△AGF,∴S四边形ACFE=S△ACF+S△AFG+S△AEG=S△AHC+S△ACF+S△AFG=S△AHF+S△AFG=2S△AFG.∵,AG=6,∴.故答案为:33.【点评】本题主要考查了全等三角形的性质和判定,将不规则四边形的面积转化为三角形的面积是解题的关键.40.(2022秋•赵县期末)如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.【分析】求出∠DBF=∠ACE,AC=DB,根据SAS推出△ACE≌△DBF,根据全等三角形的性质得出即可.【解答】证明:∵∠1+∠DBF=180°,∠2+∠ACE=180°.又∵∠1=∠2,∴∠DBF=∠ACE,∵AB=CD,∴AB+BC=CD+BC,即AC=DB,在△ACE和△DBF中,∴△ACE≌△DBF(SAS),∴∠E=∠F.【点评】本题考查了全等三角形的性质和判定,能求出△ACE≌△DBF是解此题的关键.41.(2022秋•广水市期末)如图,在平面直角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)求OA、OB的长;(2)连接PB,若△POB的面积不大于3且不等于0,求t的范围;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【分析】(1)根据已知得出关于mn的方程组,求出即可;(2)分为两种情况:①当P在线段OA上时,求出三角形BOP的面积,得出不等式组,求出其解集即可;②当P在线段OA的延长线上时,求出三角形BOP的面积,得出不等式组,求出其解集即可;(3)当OP=OB=3时,分为两种情况,画出符合条件的两种图形,结合图形和全等三角形的性质即可得出答案.【解答】解:(1)∵|m﹣n﹣3|+=0,∴m﹣n﹣3=0,2n﹣6=0,解得:n=3,m=6,∴OA=6,OB=3;(2)分为两种情况:①当P在线段OA上时,AP=t,PO=6﹣t,∴△BOP的面积S=×(6﹣t)×3=9﹣t,∵若△POB的面积不大于3且不等于0,∴0<9﹣t≤3,解得:4≤t<6;②当P在线段OA的延长线上时,如图,AP=t,PO=t﹣6,∴△BOP的面积S=×(t﹣6)×3=t﹣9,∵若△POB的面积不大于3且不等于0,∴0<t﹣9≤3,解得:6<t≤8;即t的范围是4≤t≤8且t≠6;(3)当OP=OB=3时,分为两种情况(如图):第一个图中t=3,第二个图中AP=6+3=9,即t=9;即存在这样的点P,使△EOP≌△AOB,t的值是3或9.【点评】本题考查了绝对值,二次根式的性质,垂直定义,全等三角形的性质和判定等知识点的综合运用,题目比较典型,但是有一定的难度,注意要进行分类讨论啊.二十六.全等三角形的应用(共1小题)42.(2022秋•屯留区期末)2022年10月12日某中学八年级(4)班的同学在听了“天宫课堂”第三课,即我国航天员在中国空间站进行的太空授课后,组成数学兴趣小组进行了设计伞的实践活动.康康所在的小组依据全等三角形的判定设计了截面如图所示的伞骨结构,当伞完全打开后,测得AB=AC,E,F分别是AB,AC的中点,ED=DF,那么△AED≌△AFD的依据是()A.SAS B.ASA C.HL D.SSS【分析】由E,F分别是AB,AC的中点,AB=AC,得出AE=AF;根据三边对应相等,证明△AED≌△AFD.【解答】解:∵E,F分别是AB,AC的中点,AB=AC,∴AE=AF,在△AED与△AFD中,,∴△AED≌△AFD(SSS).故选:D.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定定理.二十七.线段垂直平分线的性质(共1小题)43.(2023春•太平区期末)如图,地面上有三个洞口A、B、C,老鼠可从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口,尽快抓住老鼠,应该蹲在()A.△ABC三条角平分线的交点 B.△ABC三条边的中线的交点 C.△ABC三条高的交点 D.△ABC三条边的垂直平分线的交点【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:D.【点评】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.二十八.等腰三角形的性质(共3小题)44.(2022秋•永川区期末)等腰三角形有一个角是40°,则它的底角是()A.40° B.70° C.40°或100° D.40°或70°【分析】根据40°的角是顶角和底角分类讨论,根据等腰三角形的性质和三角形内角和定理进行计算即可.【解答】解:当40°的角是顶角时:底角=(180°﹣40°)=70°,40°的角也可以是底角.故选:D.【点评】本题考查等腰三角形的性质.熟练掌握等腰三角形的性质是解题的关键.解题时,注意分类讨论.45.(2022秋•阳新县校级期末)等腰三角形的一个角是70°,则它的顶角是40°或70°.【分析】因为题中没有指明该角是顶角还是底角,所以要分两种情况进行分析.【解答】解:①70°是底角,则顶角为:180°﹣70°×2=40°;②70°为顶角;综上所述,顶角的度数为40°或70°.故答案为:40°或70°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.46.(2022秋•东洲区期末)已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为25.【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故答案为:25.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.二十九.等腰三角形的判定与性质(共1小题)47.(2022秋•岳阳楼区期末)如图,在△ABC中,∠ABC的平分线交AC于点D,过点D作DE∥BC交AB于点E.(1)求证:BE=DE;(2)若∠A=75°,∠C=37°,求∠BDE的度数.【分析】(1)根据BD平分∠ABC,可得∠CBD=∠EBD,再由DE∥BC,可得∠CBD=∠EDB,从而得到∠EBD=∠EDB,即可求证;(2)根据三角形内角和定理可得∠ABC=68°,再由BD平分∠ABC,DE∥BC,即可求解.【解答】(1)证明:∵BD平分∠ABC,∴,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE;(2)解:在△ABC中,∠A=75°,∠C=37°∴∠ABC=180°﹣∠A﹣∠C=180°﹣75°﹣37°=68°,∵BD平分∠ABC,∴,∵DE∥BC,∴∠BDE=∠CBD=34°.【点评】本题主要考查的是等腰三角形的判定与性质,涉及到平行线的性质,三角形内角和定理,熟练掌握平行线的性质,三角形内角和定理是解题的关键.三十.等边三角形的性质(共1小题)48.(2022秋•陕西期末)如图,CD是等边△ABC边AB上的中线,AC的垂直平分线交AC于点E,交CD于点F,若DF=1,则CD的长为3.【分析】根据三线合一得出∠ADF=90°,∠ACD=30°,连接AF,根据垂直平分线的性质得出AF=FC,根据等边对等角得出∠FAE=∠FCA=30°,即可得出∠DAF=30°,根据含30度角的直角三角形的性质,得出AF=2=FC,进而即可求解.【解答】解:∵CD是等边△ABC边AB上的中线,∴CD是AB上的高,是∠ACB的平分线,∴∠ADF=90°,∠ACD=30°,如图,连接AF,∵EF是AC的垂直平分线,∴AF=FC,∴∠FAE=∠FCA=30°∴∠DAF=30°在Rt△ADF中,DF=1,∴AF=2=FC,∴CD=DF+FC=1+2=3,故答案为:3.【点评】本题考查了等边三角形的性质,垂直平分线的性质,等边对等角,含30度角的直角三角形的性质,掌握以上知识是解题的关键.三十一.多边形内角与外角(共5小题)49.(2023春•承德县期末)一个多边形的内角和是外角和的3倍,则这个多边形的边数()A.9 B.8 C.7 D.6【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形的边数为8.故选:B.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.50.(2022秋•同安区期末)五边形的外角和等于()A.180° B.360° C.540° D.720°【分析】根据多边形的外角和等于360°解答.【解答】解:五边形的外角和是360°.故选:B.【点评】本题考查了多边形的外角和定理,多边形的外角和与边数无关,任意多边形的外角和都是360°.51.(2022秋•宁津县校级期末)小林从P点向西直走8米后,向左转,转动的角度为α,再走8米,如此重复,小林共走了72米回到点P,则α为40°.【分析】根据题意可知,小林走的是正多边形,先求出边数,然后再利用外角和等于360°,除以边数即可求出α的值.【解答】解:设边数为n,根据题意,n=72÷8=9,则α=360°÷9=40°.故答案为:40°.【点评】本题主要考查了多边形的外角和等于360°,根据题意判断出所走路线是正多边形是解题的关键.52.(2022秋•陕州区期末)一个正n边形的每一外角都等于60°,则n的值是6.【分析】正多边形的每个外角相等,多边形外角和是360°,由此即可计算.【解答】解:正n边形的每一外角都等于60°,则n==6,故答案为:6.【点评】本题考查正多边形,关键是掌握正多边形的每个外角相等,多边形外角和是360°.53.(2022秋•无为市期末)若一个多边形的内角和的比它的外角和多90°,那么这个多边形的边数是多少?【分析】由多边形的内角和定理,外角和是360°,即可计算.【解答】解:设这个多边形的边数是n,由题意得:(n﹣2)×180°﹣360°=90°,∴n=12,答:这个多边形的边数是12.【点评】本题考查多边形的有关知识,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3且n为整数);多边形的外角和是360°.三十二.关于x轴、y轴对称的点的坐标(共2小题)54.(2022秋•铁岭县期末)在平面直角坐标系中,点P(3,5)关于x轴对称的点的坐标是(3,﹣5).【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行解答.【解答】解:点P(3,5)关于x轴对称的点的坐标为(3,﹣5).故答案为:(3,﹣5).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.55.(2022秋•天桥区期末)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是4;(2)若点D与点C关于y轴对称,则点D的坐标为(﹣4,3);(3)已知P为x轴上一点,若△ABP的面积为1,求点P的坐标.【分析】(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(2)利用关于y轴对称点的性质得出答案;(3)利用三角形面积求法得出符合题意的答案.【解答】解:(1)如图所示:△ABC的面积是:3×4﹣=4;故答案为:4;(2)点D与点C关于y轴对称,则点D的坐标为:(﹣4,3);故答案为:(﹣4,3);(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨师劳动合同主题公园餐饮2篇
- 大学工作计划500字(3篇万能)
- 小学生犯错后的改正保证书3篇
- 办理暂住证授权书样本3篇
- 热爱学校演讲稿(14篇)
- 试用期工作总结1000字以上(20篇)
- 2024年丽江市永胜县紧密型县域医共体总院招聘考试真题
- 河北顺德投资集团有限公司招聘笔试真题2024
- 纤维制品售后服务与投诉处理考核试卷
- 2024年广东赤坎区选调赤坎区教师发展中心中小学教研员考试真题
- GB/T 37027-2025网络安全技术网络攻击和网络攻击事件判定准则
- 2025年江苏南通苏北七市高三二模高考物理试卷(含答案详解)
- 2024年药理学考试真题回顾试题及答案
- 2025年军队文职(司机类)核心知识点备考题库(含答案)
- 2025年深圳二模考试试题及答案
- (一模)临沂市2025届高三高考第一次模拟考试生物试卷(含标准答案)
- 老年康体指导职业教育课件
- 微训练 一文多考 备考高效之诗歌《临安春雨初霁》陆游 - 教师版
- 新疆乌鲁木齐市米东区2024-2025学年九年级上学期期中数学试卷(含答案)
- 课件:《科学社会主义概论(第二版)》第一章
- 国际关系理论知到智慧树章节测试课后答案2024年秋外交学院
评论
0/150
提交评论