湖北省孝感市八校联谊2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】_第1页
湖北省孝感市八校联谊2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】_第2页
湖北省孝感市八校联谊2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】_第3页
湖北省孝感市八校联谊2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】_第4页
湖北省孝感市八校联谊2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页湖北省孝感市八校联谊2024-2025学年数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx﹣k的图象大致是()A. B. C. D.2、(4分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y1=2x与直线y2=2x﹣4在平面直角坐标系中的位置关系是平行.其中正确的是()A.①③④ B.②③ C.①②③④ D.①②③3、(4分)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A.40° B.45° C.50° D.55°4、(4分)如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能确定5、(4分)反比例函数y=-3x的图象经过点(a,b),(a-1,c),若a<0,则b与c的大小关系是(

A.b>c

B.b=c

C.b<c

D.不能确定6、(4分)如图,动点P从出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为A. B. C. D.7、(4分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y8、(4分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10.下列关于这组数据描述正确的是()A.中位数是10 B.众数是10 C.平均数是9.5 D.方差是16二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________

尾.10、(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数9.149.159.149.15方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.11、(4分)如图,平行四边形的周长为,对角线交于点,点是边的中点,已知,则______.12、(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为▲.13、(4分)已知直线与直线平行且经过点,则__.三、解答题(本大题共5个小题,共48分)14、(12分)在同一坐标系中,画出函数与的图像,观察图像写出当时,的取值范围.15、(8分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.16、(8分)先化简,再求值:,其中x是不等式≤x﹣3的最小整数解.17、(10分)如图,平行四边形中,对角线与相交于点,点为的中点,连接,的延长线交的延长线于点,连接.(1)求证:;(2)若,∠BCD=120°判断四边形的形状,并证明你的结论.18、(10分)如图1,以矩形的顶点为原点,所在直线为轴,所在直线为轴,建立平面直角坐标系,顶点为点的抛物线经过点,点.(1)写出抛物线的对称轴及点的坐标,(2)将矩形绕点顺时针旋转得到矩形.①当点恰好落在的延长线上时,如图2,求点的坐标.②在旋转过程中,直线与直线分别与抛物线的对称轴相交于点,点.若,求点的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在平面直角坐标系中,点到坐标原点的距离是______.20、(4分)计算的结果等于_______.21、(4分)四边形ABCD中,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的边的条件是_________.22、(4分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____23、(4分)用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数的图象经过点.(1)求的值;(2)将绕某个点旋转后得到(点,,的对应点分别为点,,),且在轴上,点在函数的图象上,求直线的表达式.25、(10分)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明;(3)若AD=1,求四边形AGCD的面积.26、(12分)如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

先根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,判断出k的符号,再根据一次函数的性质即可得出结论.【详解】解:正比例函数y=kx的函数值y随x的增大而减小,∴k<0,一k>0,∴一次函数y=kx-k的图像经过一、二、四象限故选D.本题考查的是一次函数的图像与系数的关系,解题时注意:一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图像经过一、二、四象限.2、C【解析】∵将A(1,2)代入y1和y2中可得左边=右边,∴①是正确的;∵当x=1时,y1=2,y2=2,故两个函数值相等,∴②是正确的;∵x<1,∴2x<2,-2x+4>2,∴y1<y2,∴③是正确的;∵直线y2=2x-4可由直线y1=2x向下平移4个单位长度可得,∴直线y1=2x与直线y2=2x-4的位置关系是平行,∴④是正确的;故选C.3、A【解析】解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.4、B【解析】

根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;【详解】证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形.故选B.本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.5、A【解析】

根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.【详解】解:∵k=-3<0,则y随x的增大而增大.又∵0>a>a-1,则b>c.故选A.本题考查了反比例函数图象的性质,关键是掌握反比例函数的性质:(1)反比例函数y=kx(k≠(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6、C【解析】

理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),

∵2018÷6=336…2,

∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,

点P的坐标为(7,4).

故选C.本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B是完全平方公式的形式,故B能分解因式;故选B.8、B【解析】【分析】根据中位数,众数,平均数,方差的意义进行分析.【详解】由大到小排列,得6、8、9、10、10、11,故中位数为(9+10)÷2=9.5,故选项A错误;由众数的概念可知,10出现次数最多,可得众数为10,故选项B正确;=9,故选项C错误;方差S2=

[(10-9)2+(6-9)2+(9-9)2+(11-9)2+(8-9)2+(10-9)2]=

,故选项D错误.故选:B【点睛】本题考核知识点:中位数,众数,平均数,方差.解题关键点:理解中位数,众数,平均数,方差的意义.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

由于水塘里有鲤鱼、鲢鱼共10000尾,而鲤鱼出现的频率为0.36,由此得到水塘有鲢鱼的频率,然后乘以总数即可得到水塘有鲢鱼又多少尾.【详解】∵水塘里有鲤鱼、鲢鱼共10000尾,

一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为0.36,

∴鲢鱼出现的频率为64%,

∴水塘有鲢鱼有10000×64%=1尾.

故答案是:1.考查了利用频率估计概率的思想,首先通过实验得到事件的频率,然后即可估计事件的概率.10、丁;【解析】试题解析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故答案为丁.11、1【解析】

根据平行四边形的性质求出AD的长,再根据中位线的性质即可求出OE的长.【详解】解:∵,∵,∴.∵为的中点,∴为的中位线,∴.故答案为:1.此题主要考查平行四边形与中位线的性质,解题的关键是熟知平行四边形的对边相等.12、1【解析】

解:∵在△ABC中,AD⊥BC,垂足为D,

∴△ADC是直角三角形;

∵E是AC的中点.

∴DE=AC(直角三角形的斜边上的中线是斜边的一半);

又∵DE=5,AB=AC,

∴AB=1;

故答案为:1.13、2【解析】

由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(1,2)代入一次函数解析式可求出b的值.【详解】直线与直线平行,,,把点代入得,解得;,故答案为:2本题主要考查了两条直线相交或平行问题,待定系数法,解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.三、解答题(本大题共5个小题,共48分)14、画图见解析,当时,的取值范围为.【解析】分析:(1)利用两点法作出一次函数的图象,根据图象直接确定自变量的取值范围即可.详解:建立平面直角坐标系过画该直线(如图)过画该直线.(如图)∵解得∴两直线的交点为(如图)根据图象当时,的取值范围为.点睛:本题考查了一次函数的图象,作一次函数的图象时,可以利用两点法作图.15、(1)见解析;(2)①见解析,②1.【解析】

(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;

(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;

②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∠FCH=∠EAG∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形;(2)①如图,连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF;②设AE=x,则FC=AF=x,DF=8-x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8-x)2=x2,解得x=1,∴AE=1.本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键16、【解析】

先根据分式混合运算的法则把原式进行化简,再求出不等式的取值范围,找出符合条件的x的最小整数解代入进行计算即可.【详解】原式====,解不等式≤x﹣3,得:x≥4,则不等式得最小整数解为x=4,当x=4时,分式无意义,所以符合条件的x的最小整数解为x=5,则原式=.17、(1)见解析;(2)四边形是矩形,见解析.【解析】

(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】(1)∵四边形是平行四边形∴∴∵,∴∴∴.(2)结论:四边形ACDF是矩形。理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120∘,∴∠FAG=60∘,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形此题考查矩形的判定,全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行证明18、(1)对称轴:直线,;(2)①;②,.【解析】

(1)首先根据矩形的性质以及A、C点的坐标确定点B的坐标,再利用待定系数法确定该抛物线的解析式.(2)①连结证明即可解答②用全等或面积法证得,再分情况解得即可【详解】解:(1)将y=0代入得C点的坐标为(0,1)则OC为1,则AB=1及B点的坐标为(2,1),再代入即可得对称轴:直线(2)①连结,易知,在和中,②可用全等或面积法证得.(两张等宽纸条重叠部分为菱形)情况1:,如图.设,,在中,(舍去),情况2:,如图.此时点与点重合,综上所述:,.本题考查二次函数,熟练掌握计算法则是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、5【解析】

根据勾股定理解答即可.【详解】点P到原点O距离是.故答案为:5此题考查勾股定理,关键是根据勾股定理得出距离.20、2【解析】

先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算21、(答案不唯一)【解析】

根据平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可得出答案.【详解】根据平行四边形的判定,可再添加一个条件:故答案为:(答案不唯一)本题考查平行四边形的判定,掌握常见的判定方法是解题关键.22、x<﹣1.【解析】

以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.【详解】解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),∴不等式-2x>ax+3的解集为x<-1.故答案为x<-1.此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.23、【解析】

可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.【详解】设,则原方程可化为:-y=1,去分母,可得1-y2=y,即y2+y-1=1,故答案为:y2+y-1=1.本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.二、解答题(本大题共3个小题,共30分)24、(1)5;(4)y=4x-1.【解析】

(1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;(4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.【详解】(1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),∴点B的坐标为(5,0),CB=4.∵M是BC边的中点,∴点M的坐标为(5,4).∵函数的图像进过点M,∴k=5×4=5.(4)∵△ABC绕某个点旋转180°后得到△DEF,∴△DEF≌△ABC.∴DE=AB,EF=BC,∠DEF=∠ABC=90°.∵点A的坐标为(1,0),点B的坐标为(5,0),∴AB=4.∴DE=4.∵EF在y轴上,∴点D的横坐标为4.∵点D在函数的图象上,当x=4时,y=5.∴点D的坐标为(4,5).∴点E的坐标为(0,5).∵EF=BC=4,∴点F的坐标为(0,-1).设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论