版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页黑龙江省大庆市一中学2024-2025学年九年级数学第一学期开学考试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若,,是Rt△ABC的三边,且,是斜边上的高,则下列说法中正确的有几个()(1),,能组成三角形(2),,能组成三角形(3),,能组成直角三角形(4),,能组成直角三角形A.1 B.2 C.3 D.42、(4分)已知矩形ABCD如图,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=()A. B. C.2 D.3、(4分)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一 B.方案二 C.方案三 D.方案四4、(4分)下列根式中是最简二次根式的是A. B. C. D.5、(4分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A.100° B.105° C.115° D.120°6、(4分)把多项式分解因式,下列结果正确的是()A. B. C. D.7、(4分)如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.8、(4分)一元二次方程x2A.x0 B.x1 C.x0,x1 D.无实根二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果点P(m+3,m+1)在x轴上,则点P的坐标为________10、(4分)已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,则________11、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)12、(4分)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则可添加的条件为_______________________________.(填一个即可)
13、(4分)以1,1,为边长的三角形是___________三角形.三、解答题(本大题共5个小题,共48分)14、(12分)如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)求出△ABP的面积.15、(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)求证:a1+b1=c1.16、(8分)如图,直角坐标系xOy中,一次函数y=-12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2(1)求m的值及l2(2)求SΔAOC(3)一次函数y=kx+1的图象为l3,且l1,l2,l317、(10分)如图,在中,点是的中点,连接并延长,交的延长线于点F.求证:.18、(10分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若二次根式在实数范围内有意义,则x的取值范围是_____.20、(4分)D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.21、(4分)一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)22、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.23、(4分)如图,已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则关于x的不等式ax+b≤kx<1的解集为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在四边形ABCD中,AB=AD=3,DC=4,∠A=60°,∠D=150°,试求BC的长度.25、(10分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.26、(12分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据勾股定理的逆定理和三角形的三边关系进行逐个分析即可.【详解】(1)a2+b2=c2,根据两边之和得大于第三边,故本项说法错误;(2)∵,,又∵a+b>c,∴,∴,即本项说法正确;(3)因为(c+h)2-h2=c2+2ch,ch=ab(直角三角形面积=两直角边乘积的一半=斜边和斜边上的高乘积的一半)∴2ch=2ab,∴(c+h)2-h2=c2+2ch=a2+b2+2ab=(a+b)2,所以本项说法正确;(4)因为,所以本项说法正确.所以说法正确的有3个.故选:C.本题主要考查直角三角形的性质,勾股定理的逆定理,三角形的三边关系,关键在于熟练运用勾股定理的逆定理,认真的进行计算.2、D【解析】
由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=3,∵BC=AD=4,∴EC=1,连接DE,如图,∴DE=,∵点F、G分别为AD、AE的中点,∴FG=.故选D.本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.3、D【解析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【详解】解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.4、B【解析】
A.=,故此选项错误;B.是最简二次根式,故此选项正确;C.=3,故此选项错误;D.=,故此选项错误;故选B.考点:最简二次根式.5、B【解析】分析:根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数即可.详解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.故选B.点睛:本题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题的关键.6、A【解析】
利用因式分解即可解答本题.(x+p)(x+q)=x2+(p+q)x+pq【详解】解:x2+x−2=(x−1)(x+2)故选:A.本题主要靠着因式分解的相关知识,要熟练应用十字相乘法.7、D【解析】试题解析:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选D.考点:动点问题的函数图象.8、C【解析】
先移项得到x2-x=0,再把方程左边分解因式得到xx-1=0,原方程转化为x=0【详解】∵x∴xx-1∴x=0或x-1=0,∴x=0,x=1.故选:C.本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.二、填空题(本大题共5个小题,每小题4分,共20分)9、(2,0)【解析】
根据x轴上点的坐标特点解答即可.【详解】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴点P的纵坐标是0,∴m+1=0,解得,m=-1,∴m+3=2,则点P的坐标是(2,0).故答案为(2,0).10、【解析】
首先根据二元一次方程的根与系数的关系,表示m+n和mn的形式,再代入计算即可.【详解】根据题意可得,3m2+6m-5=0,3n2+6n-5=0所以可得m和n是方程的两个根所以m+n=-2,mn=原式=故答案为本题主要考查根与系数的关系,其中这是关键,应当熟练掌握.11、①②④.【解析】
①易证△ABD∽△ADF,结论正确;②由①结论可得:AE=,再确定AD的范围为:3≤AD<5,即可证明结论正确;③分两种情况:当BD<4时,可证明结论正确,当BD>4时,结论不成立;故③错误;④△DCE为直角三角形,可分两种情况:∠CDE=90°或∠CED=90°,分别讨论即可.【详解】解:如图,在线段DE上取点F,使AF=AE,连接AF,则∠AFE=∠AEF,∵AB=AC,∴∠B=∠C,∵∠ADE=∠B=a,∴∠C=∠ADE=a,∵∠AFE=∠DAF+∠ADE,∠AEF=∠C+∠CDE,∴∠DAF=∠CDE,∵∠ADE+∠CDE=∠B+∠BAD,∴∠CDE=∠BAD,∴∠DAF=∠BAD,∴△ABD∽△ADF∴,即AD2=AB•AF∴AD2=AB•AE,故①正确;由①可知:,当AD⊥BC时,由勾股定理可得:,∴,∴,即,故②正确;如图2,作AH⊥BC于H,∵AB=AC=5,∴BH=CH=BC=4,∴,∵AD=AD′=,∴DH=D′H=,∴BD=3或BD′=5,CD=5或CD′=3,∵∠B=∠C∴△ABD≌△DCE(SAS),△ABD′与△D′CE不是全等形故③不正确;如图3,AD⊥BC,DE⊥AC,∴∠ADE+∠DAE=∠C+∠DAE=90°,∴∠ADE=∠C=∠B,∴BD=4;如图4,DE⊥BC于D,AH⊥BC于H,∵∠ADE=∠C,∴∠ADH=∠CAH,∴△ADH∽△CAH,∴,即,∴DH=,∴BD=BH+DH=4+==6.1,故④正确;综上所述,正确的结论为:①②④;故答案为:①②④.本题属于填空题压轴题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,动点问题和分类讨论思想等;解题时要对所有结论逐一进行分析判断,特别要注意分类讨论.12、AD∥BC(答案不唯一)【解析】
根据两组对边分别平行的四边形是平行四边形可得添加的条件为.【详解】解:四边形ABCD中,,要使四边形ABCD为平行四边形,则可添加的条件为,故答案为.此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.13、等腰直角【解析】
根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.【详解】∵∴是等腰三角形∵∴是直角三角形∴该三角形是等腰直角三角形故答案为:等腰直角.本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1),;(2).【解析】
(1)先把P(n,-2)代入y=-2x+3即可得到n的值,从而得到P点坐标为(,-2),然后把P点坐标代入y=-x+m可计算出m的值;
(2)解方程确定A,B点坐标,然后根据三角形面积公式求解.【详解】(1)∵与图象交于点,∴将代入得到,再将代入中得到.(2)∵交轴于点,∴令得,∴.∵交轴于点,∴令得,∴.∴.∴.本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.15、见解析.【解析】
图1,根据三个直角三角形的面积和等于梯形的面积列式化简即可得证;图1,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,表示出S四边形ADCB=S△ACD+S△ABC,S四边形ADCB=S△ADB+S△DCB,两者相等,整理即可得证.【详解】利用图1进行证明:证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c1+ab,又∵S四边形BCED=(a+b)1,∴ab+c1+ab=(a+b)1,∴a1+b1=c1.利用图1进行证明:证明:如图,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB=S△ACD+S△ABC=b1+ab.又∵S四边形ADCB=S△ADB+S△DCB=c1+a(b﹣a),∴b1+ab=c1+a(b﹣a),∴a1+b1=c1.本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.16、(1)y=2x;(2)4(4:1);(3)32或2或-【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l2(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,(3)分三种情况:当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=-【详解】解:(1)把C(m,4)代入一次函数y=-14=-1解得m=2,∴C(2,4设l2的解析式为y=ax,则4=2a解得a=2,∴l2的解析式为(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=-12x+5,令x=0,则y=5;令y=0∴A(10,0),∴AO=10,BO=5,∴S
(3)一次函数y=kx+1的图象为l3,且11,l2∴当l3经过点C(2,4)当l2,l3平行时,当11,l3平行时,故k的值为32或2或-本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.17、,证明略.【解析】
证明:四边形是平行四边形,..又,...18、见解析【解析】
根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可【详解】考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.一、填空题(本大题共5个小题,每小题4分,共20分)19、x>2019【解析】
根据二次根式的定义进行解答.【详解】在实数范围内有意义,即x-20190,所以x的取值范围是x2019.本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.20、1【解析】如图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×12=1cm,故答案为:1.21、增大【解析】
根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.【详解】∵一次函数图象经过一、三、四象限,∴>0,b<0,∴,∴又x>0,∴反比例函数图象在第四象限,且y随着x的增大而增大,故答案为:增大.本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.22、4cm【解析】
先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=8cm,∴OE=AD=×8=4cm,故答案为:4cm.本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.23、﹣4≤x<1【解析】
先利用待定系数法求出y=kx的表达式,然后求出y=1时对应的x值,再根据函数图象得出结论即可.【详解】解:∵已知一次函数y=ax+b和y=kx的图象交于点P(﹣4,﹣1),∴﹣4k=﹣1,解得:k=,∴解析式为y=x,当y=1时,x=1,∵由函数图象可知,当x≥﹣4时一次函数y=ax+b在一次函数y=kx图象的下方,∴关于x的不等式ax+b≤kx<1的解集是﹣4≤x<1.故答案为:﹣4≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度股权转让及技术服务合同2篇
- 二零二五版建筑门窗材料采购及安装服务合同3篇
- 二零二五版个人信用担保二手房购买贷款合同样本3篇
- 武汉托管班2025年度教师招聘与素质教育服务合同3篇
- 二零二五版智慧城市基础设施勘察设计服务合同3篇
- 2025年度安全生产应急救援预案合同范本3篇
- 二零二五版智能仓储物流中心设施维护与安全管理合同3篇
- 二零二五年建筑水电安装工程合同风险评估合同2篇
- 深圳市2025年度房地产股权交易合同(含工业地产)3篇
- 二零二五版二手房买卖合同补充协议(历史遗留问题)范本3篇
- 西南师大版五年级上册小数乘除法竖式计算题200道及答案
- 再生障碍性贫血课件
- AQ/T 2061-2018 金属非金属地下矿山防治水安全技术规范(正式版)
- 2024年湖北三江航天江河化工科技有限公司招聘笔试冲刺题(带答案解析)
- 采购人员管理制度
- 矿卡司机安全教育考试卷(带答案)
- SYT 6963-2013 大位移井钻井设计指南
- 合同增项补充协议书范本
- 产后抑郁症的护理查房
- 五年级上册数学脱式计算300题及答案
- 循环系统练习试题(含答案)
评论
0/150
提交评论