




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省德州一中数学高三第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A.8种 B.12种 C.16种 D.20种2.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.3.若(1+2ai)i=1-bi,其中a,b∈R,则|a+bi|=().A. B. C. D.54.函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)5.已知是函数的极大值点,则的取值范围是A. B.C. D.6.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为()A.1 B.C.2 D.37.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根8.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.9.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为10.已知复数和复数,则为A. B. C. D.11.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.已知实数满足不等式组,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为______.14.“今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为____尺,设该女子一个月中第n天所织布的尺数为,则______.15.已知函数,若函数有6个零点,则实数的取值范围是_________.16.已知函数有两个极值点、,则的取值范围为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.18.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.19.(12分)在中,角的对边分别为,且,.(1)求的值;(2)若求的面积.20.(12分)已知,.(1)解;(2)若,证明:.21.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.22.(10分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.2、A【解析】
由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.3、C【解析】试题分析:由已知,-2a+i=1-bi,根据复数相等的充要条件,有a=-,b=-1所以|a+bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模4、D【解析】
由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.5、B【解析】
方法一:令,则,,当,时,,单调递减,∴时,,,且,∴,即在上单调递增,时,,,且,∴,即在上单调递减,∴是函数的极大值点,∴满足题意;当时,存在使得,即,又在上单调递减,∴时,,所以,这与是函数的极大值点矛盾.综上,.故选B.方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B.6、B【解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.【详解】设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.故选:B.【点睛】本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.7、C【解析】
由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.8、D【解析】
根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.9、C【解析】
根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.10、C【解析】
利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.11、A【解析】
利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.12、B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
基本事件总数,三人都收到礼物包含的基本事件个数.由此能求出三人都收到礼物的概率.【详解】三个小朋友之间准备送礼物,约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),基本事件总数,三人都收到礼物包含的基本事件个数.则三人都收到礼物的概率.故答案为:.【点睛】本题考查古典概型概率的求法,考查运算求解能力,属于基础题.14、52【解析】
设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【详解】设从第2天开始,每天比前一天多织d尺布,
则,
解得,即每天增加的数量为,
,故答案为,52.【点睛】本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.15、【解析】
由题意首先研究函数的性质,然后结合函数的性质数形结合得到关于a的不等式,求解不等式即可确定实数a的取值范围.【详解】当时,函数在区间上单调递增,很明显,且存在唯一的实数满足,当时,由对勾函数的性质可知函数在区间上单调递减,在区间上单调递增,结合复合函数的单调性可知函数在区间上单调递减,在区间上单调递增,且当时,,考查函数在区间上的性质,由二次函数的性质可知函数在区间上单调递减,在区间上单调递增,函数有6个零点,即方程有6个根,也就是有6个根,即与有6个不同交点,注意到函数关于直线对称,则函数关于直线对称,绘制函数的图像如图所示,观察可得:,即.综上可得,实数的取值范围是.故答案为.【点睛】本题主要考查分段函数的应用,复合函数的单调性,数形结合的数学思想,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、【解析】
确定函数的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求的取值范围.【详解】函数的定义域为,,依题意,方程有两个不等的正根、(其中),则,由韦达定理得,,所以,令,则,,当时,,则函数在上单调递减,则,所以,函数在上单调递减,所以,.因此,的取值范围是.故答案为:.【点睛】本题考查了函数极值点问题,考查了函数的单调性、最值,将的取值范围转化为以为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解析】
(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式:,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.18、(1);(2)不会超过预算,理由见解析【解析】
(1)求出某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为,可得某个时间段需要检查污染源处理系统的概率;(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.求得,,求得其分布列和期望,对其求导,研究函数的单调性,可得期望的最大值,从而得出结论.【详解】(1)某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为某个时间段需要检查污染源处理系统的概率为.(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.,令,则当时,,在上单调递增;当时,,在上单调递减,的最大值为,实施此方案,最高费用为(万元),,故不会超过预算.【点睛】本题考查独立重复事件发生的概率、期望,及运用求导函数研究期望的最值,由根据期望值确定方案,此类题目解决的关键在于将生活中的量转化为数学中和量,属于中档题.19、(1)3(2)78【解析】试题分析:(1)由两角和差公式得到,由三角形中的数值关系得到,进而求得数值;(2)由三角形的三个角的关系得到,再由正弦定理得到b=15,故面积公式为.解析:(1)在中,由,得为锐角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面积.20、(1);(2)见解析.【解析】
(1)在不等式两边平方化简转化为二次不等式,解此二次不等式即可得出结果;(2)利用绝对值三角不等式可证得成立.【详解】(1),,由得,不等式两边平方得,即,解得或.因此,不等式的解集为;(2),,由绝对值三角不等式可得.因此,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用绝对值三角不等式证明不等式,考查推理能力与运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据产业园区场地厂房租赁与数据分析服务合同
- 会计师事务所合伙人聘用合同
- 餐饮品牌连锁店区域经营权转让合同
- 彩钢房加工、定制、安装、售后一站式服务合同
- 股权投资财务担保服务合同
- 拆除工程现场保护协议书
- 餐饮股东合作协议范本:股权激励与员工持股计划
- 百货商场商品退货换货服务合同范本
- 白细胞减少症诊疗规范
- 发热护理说课
- 2025年网络与信息安全法律知识考试试题及答案
- T/CIMA 0044-2023蓝藻密度在线监测仪
- 货物实时监控系统行业跨境出海项目商业计划书
- 四川省遂宁市射洪市射洪中学校2024-2025学年七年级下学期5月期中语文试题(含答案)
- 如何做质量管理
- 2025年中国小麦高筋粉市场调查研究报告
- 2024年全球及中国电动宽体矿卡行业头部企业市场占有率及排名调研报告
- 2025年初级人工智能训练师(五级)资格理论考试题库(含答案)
- 居间合同代持协议
- 三级安全教育试题(公司级、部门级、班组级)
- 消化道出血护理查房7
评论
0/150
提交评论