版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安市交大附中高三数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.2.已知,若,则等于()A.3 B.4 C.5 D.63.函数在的图象大致为()A. B.C. D.4.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生5.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或6.曲线在点处的切线方程为,则()A. B. C.4 D.87.把函数的图象向右平移个单位,得到函数的图象.给出下列四个命题①的值域为②的一个对称轴是③的一个对称中心是④存在两条互相垂直的切线其中正确的命题个数是()A.1 B.2 C.3 D.48.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙9.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.10.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.11.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则12.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是等比数列,且,,则__________,的最大值为__________.14.在的展开式中,常数项为________.(用数字作答)15.在各项均为正数的等比数列中,,且,成等差数列,则___________.16.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.18.(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.19.(12分)△ABC的内角的对边分别为,已知△ABC的面积为(1)求;(2)若求△ABC的周长.20.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.21.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.2、C【解析】
先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.3、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.4、C【解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.5、D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.6、B【解析】
求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.7、C【解析】
由图象变换的原则可得,由可求得值域;利用代入检验法判断②③;对求导,并得到导函数的值域,即可判断④.【详解】由题,,则向右平移个单位可得,,的值域为,①错误;当时,,所以是函数的一条对称轴,②正确;当时,,所以的一个对称中心是,③正确;,则,使得,则在和处的切线互相垂直,④正确.即②③④正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.8、A【解析】
利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.9、C【解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.10、C【解析】
利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.11、D【解析】
利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.12、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】,即的最大值为14、【解析】
的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.15、【解析】
利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.【详解】因为,成等差数列,所以,由等比数列通项公式得,,所以,解得或,因为,所以,所以等比数列的通项公式为.故答案为:【点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.16、1【解析】
求出导函数,由切线斜率为4即导数为4求出切点横坐标,再由切线方程得纵坐标后可求得.【详解】设,由题意,∴,,,即,∴,.故答案为:1.【点睛】本题考查导数的几何意义,函数图象某点处的切线的斜率就是该点处导数值.本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,是,,,,;(2)【解析】
(1)根据是球的直径,则,又平面,得到,再由线面垂直的判定定理得到平面,,进而得到,再利用线面垂直的判定定理得到平面.(2)以A为原点,,,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.【详解】(1)因为是球的直径,则,又平面,∴,.∴平面,∴,∴平面.根据证明可知,四面体是鳖臑.它的每个面的直角分别是,,,.(2)如图,以A为原点,,,所在直线为x,y,z轴建立直角坐标系,则,,,,.M为中点,从而.所以,设,则.由,得.由得,即.所以.设平面的一个法向量为.由.取,,,得到.记与平面所成角为θ,则.所以直线与平面所成的角的正弦值为.【点睛】本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1);(2)存在,【解析】
(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点.【详解】(1)由题可得∴,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,,∴,,∴若以为直径的圆经过点,则,∴,化简得,∴,解得或因为与不重合,所以舍.所以直线的方程为.【点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.19、(1)(2).【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的周长为.点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.20、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《工伤事故管理办法》课件
- 《服装品牌设计策划》课件
- 单位管理制度集合大合集【职工管理篇】
- 单位管理制度集粹汇编【员工管理篇】十篇
- 《学前儿童的注意》课件
- 单位管理制度合并汇编职工管理篇十篇
- 单位管理制度分享合集人力资源管理十篇
- 单位管理制度范文大合集人事管理十篇
- 单位管理制度范例合集【职员管理】
- 单位管理制度呈现大合集【职员管理篇】
- 2025年上半年河南省西峡县部分事业单位招考易考易错模拟试题(共500题)试卷后附参考答案-1
- 深交所创业板注册制发行上市审核动态(2020-2022)
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 中国音乐史与名作赏析智慧树知到期末考试答案章节答案2024年山东师范大学
- 核医学科PDCA案例
- T∕ACSC 01-2022 辅助生殖医学中心建设标准(高清最新版)
- 新版【处置卡图集】施工类各岗位应急处置卡(20页)
- 管廊维护与运营绩效考核评分表
- 钢制三通加工工艺流程介绍
- 移交涉密载体签收单(模板)
- 机动车检测站内部管理制度.doc
评论
0/150
提交评论