版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄冈八模系列湖北省黄冈市2025届数学高一上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.2.若函数为上的奇函数,则实数的值为()A. B.C.1 D.23.已知函数,则使成立的x的取值范围是()A. B.C. D.4.函数(且)的图像恒过定点()A. B.C. D.5.已知全集,,,则()=()A.{} B.{}C.{} D.{}6.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.7.下列区间中,函数单调递增的区间是()A. B.C. D.8.某甲、乙两人练习跳绳,每人练习10组,每组40个.每组计数的茎叶图如下图,则下面结论中错误的一个是()A.甲比乙的极差大B.乙的中位数是18C.甲的平均数比乙的大D.乙的众数是219.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或210.若a>b,则下列各式正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________12.在单位圆中,已知角的终边与单位圆的交点为,则______13.已知a,b,c是空间中的三条直线,α是空间中的一个平面①若a⊥c,b⊥c,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥α,b⊥α,则a⊥b;④若a∥b,a∥α,则b∥α;说法正确的序号是______14.已知,则的值是________,的值是________.15.函数在区间上的值域是_____.16.函数的反函数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的值域;(2)讨论函数零点的个数.18.已知关于不等式的解集为.(1)若,求的值;(2)若,求实数的取值范围;(3)若非空集合,请直接写出符合条件的整数的集合.19.已知函数(1)求的最小正周期;(2)若,,求的值20.如图,直四棱柱中,上下底面为等腰梯形,.,,为线段的中点(1)证明:平面平面;21.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,CA=CB,点D,E分别为AB,AC的中点.求证:(1)DE∥平面PBC;(2)CD⊥平面PAB
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,2、A【解析】根据奇函数的性质,当定义域中能取到零时,有,可求得答案.【详解】函数为上的奇函数,故,得,当时,满足,即此时为奇函数,故,故选:A3、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.4、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.5、D【解析】先求得,再求与集合的交集即可.【详解】因为全集,,,故可得,则().故选:.6、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A7、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数8、B【解析】通过茎叶图分别找出甲、乙的最大值以及最小值求出极差即可判断A;找出乙中间的两位数即可判断B;分别求出甲、乙的平均数判断C;观察乙中数据即可判断D;【详解】对于A,由茎叶图可知,甲的极差为,乙的极差为,故A正确;对于B,乙中间两位数为,故中位数为,故B错误;对于C,甲的平均数为,乙的平均数为,故C正确;对于D,乙组数据中出现次数最多为21,故D正确;故选:B【点睛】本题考查了由茎叶图估计样本数据的数字特征,属于基础题.9、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C10、A【解析】由不等式的基本性质,逐一检验即可【详解】因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a<-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选A【点睛】本题考查了不等式的基本性质,意在考查学生对该知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时12、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:13、③【解析】根据空间线面位置关系的定义,性质判断或举反例说明【详解】对于①,若a,b为平面α的直线,c⊥α,则a⊥c,b⊥c,但a∥b不一定成立,故①错误;对于②,若a∥α,b∥α,则a,b的关系不确定,故②错误;对于③,不妨设a在α上的射影为a′,则a′⊂α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正确;对于④,若b⊂α,显然结论不成立,故④错误.故答案为③【点睛】本题考查了空间线面位置关系的判断,属于中档题,14、①.②.【解析】将化为可得值,通过两角和的正切公式可得的值.【详解】因为,所以;,故答案为:,.15、【解析】结合的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知:在区间上递增,最小值为,最大值为,所以函数在区间上的值域是.故答案为:16、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)分和,分别求出对应函数的值域,进而可求出结果;(2)作出函数的图象,数形结合即可分析出结果.【小问1详解】当时,,对称轴为,开口向上,则在上单调递减,在上单调递增,所以,即值域为;当时,,则在上单调递减,且,所以,即值域为,故的值域为.【小问2详解】由,得,则零点的个数可以看作直线与的图象的交点个数,当时,取得最小值,的图象如图所示.①当时,直线与的图象有0个交点,即零点的个数为0;②当或时,直线与的图象有1个交点,即零点的个数为1;③当或时,直线与的图象有2个交点,即零点的个数为2;④当时,直线与的图象有3个交点,即零点的个数为3.综上:①当时,零点的个数为0;②当或时,零点的个数为1;③当或时,零点的个数为2;④当时,零点的个数为3.18、(1)3;(2);(3).【解析】(1)由给定解集可得2,3是方程的二根即可求解作答.(2)根据给定条件列出关于a的不等式求解作答.(3)分a大于2或小于2两类讨论作答.【小问1详解】因方程的根为或,而不等式的解集为,则2,3是方程的二根,所以.【小问2详解】因为,即有,解得:,所以实数的取值范围为.【小问3详解】因非空,则,当时,,显然集合不是集合的子集,当时,,而,则,所以整数的集合是.19、(1)(2)【解析】(1)根据二倍角的正、余弦公式和辅助角公式化简计算可得,结合公式计算即可;(2)根据同角三角函数的基本关系和角的范围求出,根据和两角和的正弦公式直接计算即可.【小问1详解】最小正周期【小问2详解】,因为,,若,则,不合题意,又,所以,因为,所以,所以20、(1)证明见解析;(2)点为中点.【解析】(1)根据给定条件可得,利用勾股定理证明即可证得平面平面.(2)取的中点,证明和,利用面面平行的判定定理即可推理作答.【小问1详解】因为为直四棱柱,则平面,而平面,于是得,在中,,,由余弦定理得,,因此,,即,又,平面,则平面,又平面,所以平面平面.【小问2详解】当点为中点时,平面平面,连接,如图,在等腰梯形中,,即,而,则四边形为平行四边形,即有,因平面,平面,则有平面,因为,,则四边形为平行四边形,有,而平面,平面,因此,平面,又,所以平面平面.21、(1)证明见解析;(2)证明见解析.【解析】(1)由点D、E分别为AB、AC中点得知DE∥BC,由此证得DE∥平面PBC;(2)要证CD⊥平面PAB,只需证明垂直平面内的两条相交直线与即可.【详解】(1)因为点D、E分别为AB、AC中点,所以DE∥BC又因为DE⊄平面PB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度保温施工合同补充协议强化保温施工合同履行与监督2篇
- 2024年度消防器材融资租赁与购买合同2篇
- 2024年三轮车整车销售与售后服务体系合作协议2篇
- 2024年室内软装个性化定制与配送服务合同范本3篇
- 2024按揭车辆转让及车辆贷款还款进度查询合同范本2篇
- 2024全新瓷砖展会参展商合作协议3篇
- 2024年度文化旅游项目投资与赠与合同3篇
- 2024版全面升级插班生校园融入服务合同协议3篇
- 2024年化工设备维护与安全评估服务协议3篇
- 2024年度宠物伤害责任赔偿及救助服务合同3篇
- 期末(试题)-2024-2025学年人教PEP版英语六年级上册
- 专题07:回忆性散文阅读(考点串讲)
- 2024年云南省昆明滇中新区公开招聘20人历年(高频重点复习提升训练)共500题附带答案详解
- 医院检验科实验室生物安全程序文件SOP
- 学问海鲜智慧树知到期末考试答案2024年
- 教你成为歌唱达人智慧树知到期末考试答案2024年
- 供应商调查评价表(简易版)
- 煤矿企业安全生产信息填报说明
- PCB命名规则详解
- 电活性聚合物5.7
- 物业人必看的一部电影
评论
0/150
提交评论