2025届福建省莆田市第二十四中学数学高一上期末达标检测试题含解析_第1页
2025届福建省莆田市第二十四中学数学高一上期末达标检测试题含解析_第2页
2025届福建省莆田市第二十四中学数学高一上期末达标检测试题含解析_第3页
2025届福建省莆田市第二十四中学数学高一上期末达标检测试题含解析_第4页
2025届福建省莆田市第二十四中学数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省莆田市第二十四中学数学高一上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.随着智能手机的普及,手机摄影越来越得到人们的喜爱,要得到美观的照片,构图是很重要的,用“黄金分割构图法”可以让照片感觉更自然、更舒适,“黄金九宫格”是黄金分割构图的一种形式,是指把画面横、竖各分三部分,以比例为分隔,4个交叉点即为黄金分割点.如图,分别用表示黄金分割点.若照片长、宽比例为,设,则()A. B.C. D.2.已知全集U=R,则正确表示集合M={0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()A. B.C. D.3.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)4.已如集合,,,则()A. B.C. D.5.设,满足约束条件,则的最小值与最大值分别为()A., B.2,C.4,34 D.2,346.某几何体的三视图如图所示(图中小正方形网格的边长为),则该几何体的体积是A. B.C. D.7.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为8.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-29.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,2510.把表示成,的形式,则的值可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点为角终边上一点,则______.12.某公司在甲、乙两地销售同一种品牌的汽车,利润(单位:万元)分别为和,其中为销售量(单位:辆).若该公司在两地共销售15辆汽车,则该公司能获得的最大利润为_____万元.13.已知角的终边过点,则______14.已知是内一点,,记的面积为,的面积为,则__________15.函数的定义域为______.16.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)若,求函数的值域;(2)已知,且对任意的,不等式恒成立,求的取值范围18.函数的一段图象如下图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位,得到的图象.求直线与函数的图象在内所有交点的横坐标之和.19.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围20.计算:(1).(2)21.已知函数,(1)当时,求的最值;(2)若在区间上是单调函数,求实数a取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】依题意可得,即可得到,再利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:依题意,所以,所以故选:B2、A【解析】根据题意解得集合,再根据集合的关系确定对应的韦恩图.【详解】解:由题意,集合N={x|x2+x=0}={-1,0},∴,故选:A【点睛】本题考查了集合之间的关系,韦恩图的表示,属于基础题.3、A【解析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A4、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.5、D【解析】画出约束条件表示的可行域,通过表达式的几何意义,判断最大值与最小值时的位置求出最值即可【详解】解:由,满足约束条件表示的可行域如图,由,解得的几何意义是点到坐标原点的距离的平方,所以的最大值为,的最小值为:原点到直线的距离故选D【点睛】本题考查简单的线性规划的应用,表达式的几何意义是解题的关键,考查计算能力,属于常考题型.6、A【解析】利用已知条件,画出几何体的直观图,利用三视图的数据求解几何体的体积即可【详解】由题意可知几何体的直观图如图:是直四棱柱,底面是直角梯形,上底为:1,下底为2,高为2,棱柱的高为2,几何体的体积为:V6故选A【点睛】本题考查几何体的直观图与三视图的关系,考查空间想象能力以及计算能力7、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B8、D【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.9、A【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A10、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】首先求,再化简,求值.【详解】由题意可知.故答案为:5【点睛】本题考查三角函数的定义和关于的齐次分式求值,意在考查基本化简和计算.12、【解析】设该公司在甲地销x辆,那么乙地销15-x辆,利润L(x)=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30.由L′(x)=-0.3x+3.06=0,得x=10.2.且当x<10.2时,L′(x)>0,x>10.2时,L′(x)<0,∴x=10时,L(x)取到最大值,这时最大利润为45.6万元答案:45.6万元13、【解析】根据三角函数的定义求出r即可.【详解】角的终边过点,,则,故答案为【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.14、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故15、且【解析】由根式函数和分式函数的定义域求解.【详解】由,解得且,所以函数的定义域为且故答案为:且16、【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当时,;当且时,.【解析】(1)由题设,令则,即可求值域.(2)令,将问题转化为在上恒成立,再应用对勾函数的性质,讨论、,分别求出的取值范围【小问1详解】因为,设,则,因为,所以,即当时,,当或时,,所以的值域为.【小问2详解】因为,所以,又可化成,因为,所以,所以,令,则,,依题意,时,恒成立,设,,当时,当且仅当,,故;当,时,在上单调递增,当时,,故,综上所述:当时,;当且时,.【点睛】关键点点睛:应用换元法及参变分离,将问题转化为二次函数求值域,及由不等式恒成立、对勾函数的最值求参数范围.18、(1)(2)【解析】(1)由图象可计算得;(2)由题意可求,进而可以求出在给定区间内与已知直线的交点的横坐标,问题得解.【小问1详解】由题图知,,于是,将的图象向左平移个单位长度,得的图象.于是所以,【小问2详解】由题意得故由,得因为,所以所以或或或,所以,在给定区间内,所有交点的横坐标之和为.19、(1)奇函数(2)【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解20、(1)20(2)-2【解析】根据指数运算公式以及对数运算公式即可求解。【详解】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论