版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年焦作市重点中学高三下学期第二次阶段考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.252.数列的通项公式为.则“”是“为递增数列”的()条件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要3.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.4.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.5.如图是一个几何体的三视图,则该几何体的体积为()A. B. C. D.6.已知数列的前项和为,且,,,则的通项公式()A. B. C. D.7.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是()A. B. C.16 D.328.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根9.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.10.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.11.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为().A. B. C. D.12.已知中,,则()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则的展开式中含的项的系数为_______.14.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.15.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB16.已知集合,.若,则实数a的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知满足,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)18.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.19.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.20.(12分)已知函数为实数)的图像在点处的切线方程为.(1)求实数的值及函数的单调区间;(2)设函数,证明时,.21.(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.22.(10分)已知,均为正数,且.证明:(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.2.A【解析】
根据递增数列的特点可知,解得,由此得到若是递增数列,则,根据推出关系可确定结果.【详解】若“是递增数列”,则,即,化简得:,又,,,则是递增数列,是递增数列,“”是“为递增数列”的必要不充分条件.故选:.【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.3.A【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.4.C【解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.5.A【解析】
根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,,,高为.∴该几何体的体积为故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.6.C【解析】
利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.7.A【解析】几何体为一个三棱锥,高为4,底面为一个等腰直角三角形,直角边长为4,所以体积是,选A.8.A【解析】
只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.9.A【解析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.10.A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.11.C【解析】
由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.【详解】解:把函数的图象向右平移个单位长度得到函数的图象,若函数在区间,上单调递增,在区间,上,,,则当最大时,,求得,故选:C.【点睛】本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.12.C【解析】
以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
首先根据定积分的应用求出的值,进一步利用二项式的展开式的应用求出结果.【详解】,根据二项式展开式通项:,令,解得,所以含的项的系数.故答案为:【点睛】本题考查定积分,二项式的展开式的应用,主要考查学生的运算求解能力,属于基础题.14.【解析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码”中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.15.-7【解析】
由题意得AB+【详解】由题意得ABBC+∴AB+【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,16.9【解析】
根据集合交集的定义即得.【详解】集合,,,,则a的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.见解析【解析】
选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.【详解】选择①时:,,故.根据正弦定理:,故,故.选择②时,,,故,为钝角,故无解.选择③时,,根据正弦定理:,故,解得,.根据正弦定理:,故,故.【点睛】本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力.18.(1);(2)【解析】
(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.19.(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.20.(1);函数的单调递减区间为,单调递增区间为;(2)详见解析.【解析】
试题分析:(1)由题得,根据曲线在点处的切线方程,列出方程组,求得的值,得到的解析式,即可求解函数的单调区间;(2)由(1)得根据由,整理得,设,转化为函数的最值,即可作出证明.试题解析:(1)由题得,函数的定义域为,,因为曲线在点处的切线方程为,所以解得.令,得,当时,,在区间内单调递减;当时,,在区间内单调递增.所以函数的单调递减区间为,单调递增区间为.(2)由(1)得,.由,得,即.要证,需证,即证,设,则要证,等价于证:.令,则,∴在区间内单调递增,,即,故.21.(1);(2)【解析】
(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【详解】(1)因为函数为奇函数,且,故;当时,,,则;故.(2)令,解得,画出函数关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 买卖合同模板集锦六篇
- 2024年版短期租房合同样本
- 2024年版智能家居玻璃胶采购与供应合同
- 大班社会教案4篇
- 公司市场部工作计划模板
- 客服人员个人工作总结总结计划
- 2021-2026年中国抗贫血药铁剂行业市场全景调研及投资规划建议报告
- 一年级语文老师述职报告
- 2022年中职教师工作计划个人
- 三年级上册数学说课稿范文集锦七篇
- 2024年金融工作会议
- 2024年人教版八年级生物上册期末考试卷(附答案)
- 2024年叉车租赁合同经典版(四篇)
- 环保工程施工安全检查表
- 人教版五年级上册数学期末考试试卷含答案
- 小学科学青岛版(六三制)六年级上册全册教案(共25课)(2022秋)
- 2024焊接工艺规程
- 外研版(2024新版)七年级上册英语期末复习Unit1~6共6套学业质量检测试卷汇编(含答案)
- 药理学期末试卷
- 小学高年级课后服务 scratch3.0编程教学设计 一阶第27课 植物大战僵尸-僵尸来袭教学设计
- 2024年人民日报社招聘应届高校毕业生85人笔试高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论