




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页河北省秦皇岛市卢龙县2025届数学九年级第一学期开学统考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若a使得关于x的分式方程有正整数解。且函数y=ax−2x−3与y=2x−1的图象有交点,则满足条件的所有整数a的个数为()A.1 B.2 C.3 D.42、(4分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美 B.中华游 C.爱我中华 D.美我中华3、(4分)如图,,点是垂直平分线的交点,则的度数是()A. B.C. D.4、(4分)已知下面四个方程:+3x=9;+1=1;=1;=1.其中,无理方程的个数是()A.1 B.2 C.3 D.45、(4分)下列代数式是分式的是()A. B. C. D.6、(4分)已知一次函数的图象如图所示,则下列说法正确的是()A., B.,C., D.,7、(4分)如图,在RtΔABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7 B.8 C.9 D.108、(4分)下列方程中,判断中错误的是()A.方程是分式方程 B.方程是二元二次方程C.方程是无理方程 D.方程是一元二次方程二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,,、分别是、的中点,平分,交于点,若,,则的长是______.10、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)11、(4分)不等式的非负整数解为_____.12、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为_____________.13、(4分)我国很多城市水资源短缺,为了加强居民的节水意识,某自来水公司采取分段收费标准.某市居民月交水费y(单位:元)与用水量x(单位:吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费_____元.三、解答题(本大题共5个小题,共48分)14、(12分)阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”中,若,则;(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.求证:四边形是“和谐四边形”.15、(8分)解分式方程:16、(8分)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.17、(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数y=(x<0)的图象相交于点A(﹣4,m).(1)求反比例函数y=的解析式;(2)若点P在x轴上,AP=5,直接写出点P的坐标.18、(10分)计算:×2-÷;B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为.20、(4分)若分解因式可分解为,则=______。21、(4分)若是整数,则最小的正整数n的值是_____________。22、(4分)如图,一次函数y=ax+b的图象经过A(0,1)和B(2,0)两点,则关于x的不等式ax+b<1的解集是_____.23、(4分)在计算器上按照下面的程序进行操作:下表中的x与y分别是输入的6个数及相应的计算结果:x
-2
-1
0
1
2
3
y
-5
-2
1
4
7
10
上面操作程序中所按的第三个键和第四个键应是二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形ABCD中,点E在BC边上,AF平分∠DAE,DF//AE,AF与CD相交于点G.(1)如图1,当∠AEC=,AE=4时,求FG的长;(2)如图2,在AB边上截取点H,使得DH=AE,DH与AF、AE分别交于点M、N,求证:AE=AH+DG25、(10分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元。(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。26、(12分)如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:(1)求出h与d之间的函数关系式;(2)某人身高为196cm,一般情况下他的指距应是多少?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
先解分式方程,求得a的值,再由函数图象有交点求得a的取值范围,则可求得a的值,可求得答案.【详解】解分式方程可得x=4−,∵a使得关于x的分式方程有正整数解,∴a的值为0、2、4、6,联立y=ax−2x−3与y=2x−1,消去y,整理可得ax−4x−2=0,由函数图象有交点,可知方程ax−4x−2=0有实数根,当a=0时,方程有实数解,满足条件,当a≠0时,则有△⩾0,即16+8a⩾0,解得a⩾−2且a≠0,∴满足条件的a的值为0、2、4、6,共4个,故选D.此题考查分式方程的解,二次函数的性质,一次函数的性质,解题关键在于求得a的值.2、C【解析】
将原式进行因式分解即可求出答案.【详解】解:原式=(x2-y2)(a2-b2)=(x-y)(x+y)(a-b)(a+b)由条件可知,(x-y)(x+y)(a-b)(a+b)可表示为“爱我中华”故选C.本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.3、B【解析】
利用线段垂直平分线的性质即可得出答案.【详解】解:连接OA,OB∵∠BAC=80°∴∠ABC+∠ACB=100°又∵O是AB和AC垂直平分线的交点∴OA=OB,OA=OC∴∠OBA=∠OAB,∠OCA=∠OAC,OB=OC∴∠OBA+∠OCA=80°∴∠OBA+∠OCB=100°-80°=20°又∵OB=OC∴∠BCO=∠CBO=10°故答案选择B.本题主要考查了线段垂直平分线和等腰三角形的性质.4、A【解析】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.【详解】无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,故选:A.本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..5、D【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】、、的分母中均不含有字母,因此它们是整式,而不是分式;分母中含有字母,因此是分式.故选:D.考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.6、D【解析】
根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k>1,直线与y轴负半轴相交,所以b<1.故选D.本题考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.7、D【解析】
根据勾股定理即可得到结论.【详解】在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=AC2故选D.本题考查了勾股定理,熟练掌握勾股定理是解题的关键.8、C【解析】
逐一进行判断即可.【详解】A.方程是分式方程,正确,故该选项不符合题意;B.方程是二元二次方程,正确,故该选项不符合题意;C.方程是一元二次方程,错误,故该选项符合题意;D.方程是一元二次方程,正确,故该选项不符合题意;故选:C.本题主要考查方程的概念,掌握一元二次方程,分式方程,二元二次方程,无理方程的概念是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、.【解析】
根据三角形中位线定理得到DE∥AB,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【详解】解:、分别是、的中点,,,,,平分,,,,,故答案为.本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.10、①③④【解析】
首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.【详解】解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF,
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.11、0,1,1【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解不等式得:,∴不等式的非负整数解为0,1,1.故答案为:0,1,1.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12、(2,1)【解析】【分析】直接运用线段中点坐标的求法,易求N的坐标.【详解】点N的坐标是:(),即(2,1).故答案为:(2,1)【点睛】本题考核知识点:平面直角坐标系中求线段的中点.解题关键点:理解线段中点的坐标求法.13、38.8【解析】
根据图形可以写出两段解析式,即可求得自来水公司的收费数.【详解】将(10,18)代入y=ax得:10a=18,解得:a=1.8,故y=1.8x(x⩽10)将(10,18),(15,31)代入y=kx+b得:,解得:,故解析式为:y=2.6x−8(x>10)把x=18代入y=2.6x−8=38.8.故答案为38.8.本题考查用一次函数解决实际问题,关键是应用一次函数的性质.三、解答题(本大题共5个小题,共48分)14、(1);(2)见解析.【解析】
(1)根据四边形的内角和是360°,即可得到结论;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可.【详解】解:(1)∵四边形ABCD是“和谐四边形”,∠A+∠B+∠C+∠D=360°,∵∠B=135°,∴∠A=∠D=∠C=(360°−135°)=75°,故答案为:75°;(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,∴∠DAB=∠DCB=∠ABC,∴四边形ABCD是“和谐四边形”.本题主要考查了翻折变换−折叠问题,四边形的内角和是360°,平行四边形的性质等,解题的关键是理解和谐四边形的定义.15、【解析】
观察可得最简公分母是(x-3)(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:去分母,得:2(x-2)=3(x-3)去括号,得:2x-4-3x+9=0解得:x=5检验:当x=5时,(x-3)(x-2)=6≠0,∴x=5是原方程的解.本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根16、(1)A种商品每件的进价为20元,B种商品每件的进价为80元;(2)当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.【解析】试题分析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.试题解析:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+1.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤2.∵在w=10m+1中,k=10>0,∴w的值随m的增大而增大,∴当m=2时,w取最大值,最大值为10×2+1=120,∴当购进A种商品800件、B种商品2件时,销售利润最大,最大利润为120元.考点:一次函数的应用,二元一次方程组的应用,解一元一次不等式.17、(1)y=﹣;(2)P点的坐标是(﹣7,0)或(﹣1,0).【解析】
(1)先求出A的坐标,再代入反比例函数解析式求出即可;(2)根据勾股定理求出即可.【详解】(1)∵A(﹣4,m)在一次函数y=﹣x上,∴m=4,即A(﹣4,4),∵A在反比例函数y=(x<0)的图象上,∴k=﹣16,∴反比例函数y=的解析式是y=﹣;(2)∵Rt△ABP中,∠ABP=90°,AB=4,AP=5,∴BP==3,-4-3=-7,-4+3=-1,∴P点的坐标是(﹣7,0)或(﹣1,0).本题考查了待定系数法求反比例函数解析式,勾股定理,熟练掌握相关内容是解题的关键.注意数形结合思想与分类讨论思想的运用.18、4【解析】试题分析:先算乘除,再合并同类二次根式。×2-÷考点:本题考查的是二次根式的混合运算点评:解题的关键是熟知二次根式的乘法法则:,二次根式的除法法则:.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.由图象可知,此时.20、-7【解析】
将(x+3)(x+n)的形式转化为多项式,通过对比得出m、n的值,即可计算得出m+n的结果.【详解】(x+3)(x+n)=+(3+n)x+3n,对比+mx-15,得出:3n=﹣15,m=3+n,则:n=﹣5,m=﹣2.所以m+n=﹣2﹣5=﹣7.本题考查了因式分解,解题关键在于通过对比两个多项式,得出m、n的值.21、1【解析】
是整数则1n一定是一个完全平方数,把1分解因数即可确定.【详解】解:∵1=1×1,
∴n的最小值是1.
故答案为:1.本题考查了二次根式的定义:一般地,我们把形如a(a≥0)的式子叫做二次根式.也考查了=|a|.22、x>1【解析】
观察函数图象,写出在y轴右侧的自变量的取值范围即可.【详解】当x>1时,ax+b<1,即不等式ax+b<1的解集为x>1.故答案为:x>1本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.23、+、1【解析】设y=kx+b,把x=-2,y=-5;x=0,y=1代入得:解之得即y=3x+1.所以第三个键和第四个键应是+、1.二、解答题(本大题共3个小题,共30分)24、(1)FG=2;(2)见解析.【解析】
(1)根据正方形的性质,平行线的性质,角平分线的性质可得出∠DAF=∠F=30°,进一步可求得∠GDF=∠F=30°,从而得出FG=DG,利用勾股定理可求出DG=2,故FG=2.(2)根据已知条件可证得AE=DH且AE⊥DH,从而证得∠MAH=∠AMH,∠DMG=∠DGM,从而证得AH=MH,DM=DG,而AE=DH=DM+MH即AE=AH+DG.【详解】(1)当∠AEC=120°,即∠DAE=60°,即∠BAE=∠EAG=∠DAG=30°,在三角形ABE中,AE=4,所以,BE=2,AB=2,所以,AD=AB=2,又DF∥AE,所以,∠F=∠EAG=30°,所以,∠F=∠DAG=30°,又所以,∠AGD=60°,所以,∠CDG=30°,所以FG=DG在△ADG中,AD=2,所以,DG=2,FG=2(2)证明:∵四边形ABCD为正方形,∴∠DAH=∠ABE=90°,AD=AB,在Rt△ADH和Rt△BAE中∴Rt△ADH≌Rt△BAE,∴∠ADH=∠BAE,∵∠BAE+∠DAE=90°,∴∠ADH+∠DAE=90°,∴∠AND=90°.∵AF平分∠DAE,∴∠DAG=∠EAG,∵∠ADH=∠BAE,∴∠DAG+∠ADH=∠EAG+∠BAE.即∠MAH=∠AMH.∴AH=MH.∵A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030炼油化工设备市场发展现状调查及供需格局分析预测报告
- 2025-2030渔船行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030消毒液产业行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030油脂拦截器行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030水利产业市场深度分析及发展趋势与投资战略研究报告
- 2025-2030氧化锆氧化铝翻板行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030果肉饮料产业政府战略管理与区域发展战略研究咨询报告
- 2025-2030机器监测振动分析仪行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 智慧农业与农业科技投资考核试卷
- 护理出院计划项目
- 注射用重组人TNK组织型纤溶酶原激活剂-药品临床应用解读
- 2025年第六届中小学全国国家版图知识竞赛测试题库及答案
- ACLS-PC-SA课前自我测试试题及答案
- 部编人教版二年级道德与法治下册全册教案+知识点总结
- 浅析棒材表面裂纹特点及产生原因解读
- 初中生如何与父母相处(课堂PPT)
- 艾滋病合并肺孢子菌肺炎临床路径
- 小学六年级上册信息技术-第11课让电子作品集动起来南方版(18张)ppt课件
- 04-涉密人员考试试题库保密基本知识试题(答案)
- 最全的遗传概率计算方法(高中生物)
- 二级妇产医院标准
评论
0/150
提交评论