河北省大城县2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第1页
河北省大城县2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第2页
河北省大城县2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第3页
河北省大城县2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第4页
河北省大城县2025届数学九年级第一学期开学综合测试模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页河北省大城县2025届数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)抛物线y=-3x2-4的开口方向和顶点坐标分别是()A.向下,(0,4) B.向下,(0,-4)C.向上,(0,4) D.向上,(0,-4)2、(4分)用配方法解一元二次方程x2-8x+3=0,此方程可化为()A.(x-4)2=13 B.(x+4)2=13 C.(x-4)2=19 D.(x+4)2=193、(4分)如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为()A. B. C. D.4、(4分)下列说法正确的是()A.若两个向量相等则起点相同,终点相同B.零向量只有大小,没有方向C.如果四边形ABCD是平行四边形,那么=D.在平行四边形ABCD中,﹣=5、(4分)下列各点中,不在反比例函数图象上的点是()A. B. C. D.6、(4分)如图,在平行四边形ABCD中,E是边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的度数为A. B. C. D.7、(4分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8、(4分)下列图形中,是轴对称图形,不是中心对称图形的是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,平行四边形ABCD内的一点E到边AD,AB,BC的距离相等,则∠AEB的度数等于____.10、(4分)如图,在梯形中,,对角线,且,则梯形的中位线的长为_________.11、(4分)已知,则的值为__________.12、(4分)如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.13、(4分)若数据,,1,的平均数为0,则__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知菱形的对角线相交于点,延长至点,使,连结.求证:.当时,四边形为菱形吗?请说明理由.15、(8分)某加工车间共有20名工人,现要加工1800个甲种零件,1000个乙种零件,已知每人每天加工甲种零件30个或乙种零件50个(每人只能加工一种零件),怎样分工才能确保同时完成两种零件的加工任务?16、(8分)如图,△ABC中,D、E分别是AB、AC的中点,延长DE至点F,使EF=DE,连接CF.证明:四边形DBCF是平行四边形.17、(10分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?18、(10分)在矩形ABCD中,AB=3,AD=2,点E是射线DA上一点,连接EB,以点E为圆心EB长为半径画弧,交射线CB于点F,作射线FE与CD延长线交于点G.(1)如图1,若DE=5,则∠DEG=______°;(2)若∠BEF=60°,请在图2中补全图形,并求EG的长;(3)若以E,F,B,D为顶点的四边形是平行四边形,此时EG的长为______.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在数轴上点A表示的实数是___.20、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.21、(4分)如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,则下列结论:;;;其中正确结论的序号是______.22、(4分)重庆新高考改革方案正式确定,高考总成绩的组成科目由“语数外+文综/理综”变成“3+1+2”,其中“2”是指学生需从思想政治、地理、化学、生物学四门科目中自选2门科目,则小明从这四门学科中恰好选择化学、生物的概率为_____.23、(4分)如图,点A的坐标为2,2,则线段AO的长度为_________.二、解答题(本大题共3个小题,共30分)24、(8分)已知二次函数(,为常数).(1)当,时,求二次函数的最小值;(2)当时,若在函数值的情况下,只有一个自变量的值与其对应,求此时二次函数的解析式;(3)当时,若在自变量的值满足≤≤的情况下,与其对应的函数值的最小值为21,求此时二次函数的解析式.25、(10分)某中学积极开展跳绳锻炼,一次体育測试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和頻数分布直方图,如图:次数频数4181381(1)补全频数分布表和频数分布直方图;(2)表中组距是次,组数是组;(3)跳绳次数在范围的学生有人,全班共有人;(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?26、(12分)某经销商从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)700100售价(元/台)900160他计划一次性购进这两种品牌计算器共100台(其中A品牌计算器不能超过50台),设该经销商购进A品牌计算器x台(x为整数),这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求A品牌计算器不得少于48台,求该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:在抛物线y=-3x2-4中a<0,所以开口向下;b=0,对称轴为x=0,所以顶点坐标为(0,-4),故选B.2、A【解析】

移项后两边都加上一次项系数一半的平方,写成完全平方式即可.【详解】x2-8x=-3,

x2-8x+16=-3+16,

即(x-4)2=13,

故选A.本题考查了运用配方法解方程,熟练掌握配方法是解题的关键.3、A【解析】

先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.【详解】解:∵BE⊥AC,CD⊥AC,∴∠ACD=∠BEA=90°,∴∠CDB+∠DCA=90°,又∵∠DAB=∠DAC+∠BAC=90°在△ACD和△AEB中,∴△ACD≌△BEA(AAS)∴AC=BE∵△ABC的面积为8,∴,解得BE=4,在Rt△ABE中,.故选择:A.本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.4、C【解析】

根据平面向量的性质即可判断.【详解】A、错误.两个向量相等还可以平行的;B、错误.向量是有方向的;C、正确.平行四边形的对边平行且相等;D、错误.应该是,+=;故选:C.本题考查平面向量、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、A【解析】

直接利用反比例函数图象上点的坐标特点进而得出答案.【详解】解:∵,∴xy=12,A.(3,−4),此时xy=3×(−4)=−12,符合题意;B、(3,4),此时xy=3×4=12,不合题意;C、(2,6),此时xy=2×6=12,不合题意;D、(−2,−6),此时xy=−2×(−6)=12,不合题意;故选:A.此题主要考查了反比例函数图象上点的坐标特征,属于基础题.6、B【解析】

由平行四边形的性质得出,由折叠的性质得:,,由三角形的外角性质求出,与三角形内角和定理求出,即可得出的大小.【详解】四边形ABCD是平行四边形,,由折叠的性质得:,,,,,故选B.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理,熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED'是解决问题的关键.7、A【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.8、B【解析】

根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;B选项是轴对称图形,不是中心对称图形,故本选项符合题意;C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.故选B.此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、90°【解析】

点E到边AD,AB,BC的距离相等,可知可知AE、BE分别为∠DAB、∠ABC的角平分线,然后根据角平分线的定义及三角形内角和求解即可.【详解】依题意,可知AE、BE分别为∠DAB、∠ABC的角平分线,又AD∥BC,所以,∠DAB+∠CBA=180°,所以,∠DAB+∠CBA=90°,即∠EAB+∠EBA=90°,所以,∠AEB=90°.故答案为:90°.本题考查了角平分线的判定,平行四边形的性质,三角形内角和等知识,证明AE、BE分别为∠DAB、∠ABC的角平分线是解答本题的关键.10、1【解析】

解:过C作CE∥BD交AB的延长线于E,

∵AB∥CD,CE∥BD,

∴四边形DBEC是平行四边形,

∴CE=BD,BE=CD

∵等腰梯形ABCD中,AC=BD∴CE=AC

∵AC⊥BD,CE∥BD,

∴CE⊥AC

∴△ACE是等腰直角三角形,

∵AC=,

∴AE=AC=10,∴AB+CD=AB+BE=10,

∴梯形的中位线=AE=1,

故答案为:1.本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.11、【解析】

根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.【详解】由题意得,解得:x=4,所以y=3,所以=,故答案为:.本题考查了二次根式有意义的条件,熟练掌握是解题的关键.12、(5,4)【解析】

由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).故答案为(5,4).13、1【解析】

根据平均数的公式列式计算即可.【详解】解:=0,得a=1,故答案为:1.本题主要考查了平均数的计算,要熟练掌握方法.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)详见解析.【解析】

(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;

(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;【详解】证明:四边形是菱形,∴,,又∵,∴,,∴四边形

是平行四边形,∴;解:结论:四边形是菱形.理由:∵四边形是菱形,∴,∵,∴,是等边三角形,∴,∵四边形是平行四边形,∴四边形是菱形.考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.15、安排15名工人加工甲种零件,5名工人加工乙种零件.【解析】

设安排人生产甲种零件,则(20-x)人生产乙种零件,根据“生产甲种零件的时间生产乙种零件的时间”列方程组求解可得.【详解】解:设安排x名工人加工甲种零件,则(20-x)人生产乙种零件,根据题意,得:.解这个方程,得经检验:是所列方程的解,且符合实际意义..答:安排15名工人加工甲种零件,5名工人加工乙种零件.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.16、证明见解析.【解析】分析:根据中位线的性质得出,结合DE=EF,从而得出DF和BC平行且相等,从而得出答案.详解:证明:∵D、E分别是AB、AC的中点,∴DE=BC,DE∥BC,又EF=DE,∴DF=DE+EF=BC,∴四边形DBCF是平行四边形.点睛:本题主要考查的是三角形中位线的性质以及平行四边形的判定定理,属于中等难度题型.了解中位线的性质是解决这个问题的关键.17、(1)(2)3小时【解析】

(1)设,根据题意得,解得(2)当时,∴骑摩托车的速度为(千米/时)∴乙从A地到B地用时为(小时)【详解】请在此输入详解!18、(1)45;(2)见解析,EG=4+2;(3)2【解析】

(1)由题意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性质可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,结合等腰三角形的性质,即可求解;(2)由题意画出图形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性质可得AE=,DE=2+,由直角三角形的性质可得EG的长;(3)由平行四边形的性质可得EF=BD,ED=BF,由等腰三角形的性质可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中点,B是HC的中点,即可求解.【详解】(1)∵DE=5,AB=3,AD=2,∴AE=AB=3,∴∠AEB=∠ABE=45°,∵四边形ABCD是矩形,∴AD∥CB,∴∠AEB=∠EBF=45°,∠EFB=∠GED,∵EF=EB,∴∠EFB=∠EBF=45°,∴∠GED=45°,故答案为:45;(2)如图1所示.∵四边形ABCD是矩形,∴∠1=∠2=∠3=∠ABF=∠C=90°.∵∠4=60°,EF=EB,∴∠F=∠5=60°.∴∠6=∠G=30°,∴AE=BE.∵AB=3,∴根据勾股定理可得:AE2+32=(2AE)2,解得:AE=,∵AD=2,∴DE=2+,∴EG=2DE=4+2;(3)如图2,连接BD,过点E作EH⊥FC,延长BA交FG于点M,∵四边形EDBF是平行四边形,∴EF=BD,ED=BF,∵EF=BE,∴EB=BD,且AB⊥DE,∴AE=AD=2,∴BF=DE=4,∵EB==,∴EF=,∵EF=BE,EH⊥FC,∴FH=BH=2=BC,∴CH=4,∵EH⊥BC,CD⊥BC,AB⊥BC,∴EH∥CG∥BM,∵H是BF的中点,B是HC的中点,∴E是FM的中点,M是EG的中点,∴EG═2EF=2故答案为:2本题主要考查矩形的性质,平行四边形的性质,勾股定理,等腰三角形的性质,直角三角形的性质定理,添加辅助线,构造等腰三角形和直角三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

首先利用勾股定理计算出BO的长,然后再根据AO=BO可得答案.【详解】OB==,

∵OB=OA,

∴点A表示的实数是,故答案为:.本题考查实数与数轴、勾股定理,解题的关键是掌握勾股定理的应用.20、1【解析】

解:应分(70-42)÷4=7,

∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.

故答案为:1.21、①③④【解析】(1)∵抛物线开口向下,∴,又∵对称轴在轴的右侧,∴,∵抛物线与轴交于正半轴,∴,∴,即①正确;(2)∵抛物线与轴有两个交点,∴,又∵,∴,即②错误;(3)∵点C的坐标为,且OA=OC,∴点A的坐标为,把点A的坐标代入解析式得:,∵,∴,即③正确;(4)设点A、B的坐标分别为,则OA=,OB=,∵抛物线与轴交于A、B两点,∴是方程的两根,∴,∴OA·OB=.即④正确;综上所述,正确的结论是:①③④.22、【解析】

先用树状图将所有可能的情况列出来,然后找到恰好选中化学、生物两科的情况数,然后利用概率公式等于恰好选中化学、生物两科的情况数与总情况数之比即可求解.【详解】设思想政治、地理、化学、生物(分别记为A、B、C、D),画树状图如图所示,由图可知,共有12种等可能结果,其中该同学恰好选中化学、生物两科的有2种结果,所以该同学恰好选中化学、生物两科的概率为=.故答案为:.本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法及概率公式是解题的关键.23、2【解析】

根据勾股定理计算即可.【详解】解:∵点A坐标为(2,2),∴AO=22故答案为:22本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.二、解答题(本大题共3个小题,共30分)24、(1)二次函数取得最小值-1;(2)或;(3)或.【解析】

(1)当b=2,c=-3时,二次函数的解析式为,把这个解析式化为顶点式利用二次函数的性质即可求最小值.(2)当c=5时,二次函数的解析式为,又因函数值y=1的情况下,只有一个自变量x的值与其对应,说明方程有两个相等的实数根,利用即可解得b值,从而求得函数解析式.(3)当c=b2时,二次函数的解析式为,它的图象是开口向上,对称轴为的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即<b;②对称轴位于b≤x≤b+3这个范围时,即b≤≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即>b+3,根据列出的不等式求得b的取值范围,再根据x的取值范围b≤x≤b+3、函数的增减性及对应的函数值y的最小值为21可列方程求b的值(不合题意的舍去),求得b的值代入也就求得了函数的表达式.【详解】解:(1)当b=2,c=-3时,二次函数的解析式为,即.∴当x=-1时,二次函数取得最小值-1.(2)当c=5时,二次函数的解析式为.由题意得,方程有两个相等的实数根.有,解得,∴此时二次函数的解析式为或.(3)当c=b2时,二次函数的解析式为.它的图象是开口向上,对称轴为的抛物线.①若<b时,即b>0,在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而增大,故当x=b时,为最小值.∴,解得,(舍去).②若b≤≤b+3,即-2≤b≤0,当x=时,为最小值.∴,解得(舍去),(舍去).③若>b+3,即b<-2,在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而减小,故当x=b+3时,为最小值.∴,即解得(舍去),.综上所述,或b=-1.∴此时二次函数的解析式为或.考点:二次函数的综合题.25、(1)见解析,(2)表中组距是20次,组数是7组;(3)31人,50人;(4)26%【解析】

(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,,成绩在160≤x≤180的人数为4人,然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论