版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页广西玉林市北流市2024-2025学年九年级数学第一学期开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.2、(4分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,53、(4分)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.4、(4分)已知,则下列不等式成立的是()A. B. C. D.5、(4分)若分式有意义,则的取值范围是()A. B. C. D.6、(4分)一个等腰三角形的周长为14,其一边长为4那么它的底边长为()A.5 B.4 C.6 D.4或67、(4分)已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.8、(4分)下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为()①②③ ④A.42 B.46 C.68 D二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若,则y_______(填“是”或“不是”)x的函数.10、(4分)在中,,,点是中点,点在上,,将沿着翻折,点的对应点是点,直线与交于点,那么的面积__________.11、(4分)如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.12、(4分)若关于x的二次方程(m+1)x2+5x+m2-3m=4的常数项为0,则m的值为______.13、(4分)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.三、解答题(本大题共5个小题,共48分)14、(12分)某图书馆计划选购甲、乙两种图书.甲图书每本价格是乙图书每本价格的2.5倍,如果用900元购买图书,则单独购买甲图书比单独购买乙图书要少18本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总费用不超过1725元,那么该图书馆最多可以购买多少本乙图书?15、(8分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.16、(8分)如图,在四边形ABCD中,,E为BD中点,延长CD到点F,使.求证:求证:四边形ABDF为平行四边形
若,,,求四边形ABDF的面积17、(10分)(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.18、(10分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y=(k≠0)的图象经过点H,则k=;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A所代表的正方形的边长是_____.20、(4分)已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为.21、(4分)如图,菱形ABCD中,AC、BD交于点O,DE⊥BC于点E,连接OE,若∠ABC=120°,则∠OED=______.22、(4分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.23、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).二、解答题(本大题共3个小题,共30分)24、(8分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米分钟,乙在地提速时距地面的高度为米;(2)直接写出甲距地面高度(米和(分之间的函数关系式;(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?25、(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.26、(12分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.(1)求反比例函数解析式和点C的坐标;(2)求△OCD的面积.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.2、A【解析】
根据众数及中位数的定义,结合所给数据即可作出判断.【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A.本题考查(1)、众数;(2)、中位数.3、A【解析】试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=.故选A.考点:1.勾股定理2.含30度角的直角三角形.4、C【解析】
根据不等式的性质逐个判断即可.【详解】解:A、∵x>y,∴2x>2y,故本选项不符合题意;B、∵x>y,∴x−6>y−6,故本选项不符合题意;C、∵x>y,∴x+5>y+5,故本选项符合题意;D、∵x>y,∴−3x<−3y,故本选项不符合题意;故选:C.本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:不等式的性质1是:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,不等式的性质2是:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,不等式的性质3是:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.5、A【解析】
根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.此题考查分式有意义的条件,正确理解条件是解题的关键.6、D【解析】
分为两种情况:①4是等腰三角形的底边;②4是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析.【详解】解:①当4是等腰三角形的底边时,则其腰长为=5,能构成三角形,②当4是等腰三角形的腰时,则其底边为14-4×2=6,能构成三角形,综上,该三角形的底边长为4或6.故选:D.本题考查了等腰三角形的性质及三角形三边关系,注意分类讨论思想在解题中的应用.7、B【解析】试题解析:设乙车的速度为x千米/小时,则甲车的速度为(x-12)千米/小时,由题意得,.故选B.8、C【解析】试题分析:观察图形:第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,通过计算第=4\*GB3④矩形的周长为26,前4个矩形的周长有这样的一个规律,第③个的矩形的周长=第①个矩形的周长+第②个矩形的周长,即16=6+10;第=4\*GB3④个的矩形的周长=第=3\*GB3③个矩形的周长+第②个矩形的周长,即26=10+16;第=5\*GB3⑤个的矩形的周长=第=3\*GB3③个矩形的周长+第=4\*GB3④个矩形的周长,即=26+16=42;第=6\*GB3⑥个的矩形的周长=第=4\*GB3④个矩形的周长+第=5\*GB3⑤个矩形的周长,即=26+42=48考点:矩形的周长点评:本题考查矩形的周长,通过前四个2的周长找出规律是本题的关键,考查学生的归纳能力二、填空题(本大题共5个小题,每小题4分,共20分)9、不是【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.10、或【解析】
通过计算E到AC的距离即EH的长度为3,所以根据DE的长度有两种情况:①当点D在H点上方时,②当点D在H点下方时,两种情况都是过点E作交AC于点E,过点G作交AB于点Q,利用含30°的直角三角形的性质和勾股定理求出AH,DH的长度,进而可求AD的长度,然后利用角度之间的关系证明,再利用等腰三角形的性质求出GQ的长度,最后利用即可求解.【详解】①当点D在H点上方时,过点E作交AC于点E,过点G作交AB于点Q,,点是中点,.∵,.,,.,,,,,.由折叠的性质可知,,,,.又,.,.,即,.,;②当点D在H点下方时,过点E作交AC于点E,过点G作交AB于点Q,,点是中点,.∵,.,,.,,,,,.由折叠的性质可知,,,,.又,.,.,即,.,,综上所述,的面积为或.故答案为:或.本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.11、1【解析】
首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.【详解】解:由题意得:∠DCA=∠ACE,∵四边形ABCD为矩形,∴DC//AB,∠B=90°,∴∠DCA=∠CAE,∴∠CAE=∠ACE,∴AE=CE(设为x),则BE=8-x,由勾股定理得:x2=(8-x)2+42,解得:x=5,∴S△AEC=×5×4=1,故答案为1.本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.12、1【解析】
根据方程常数项为0,求出m的值即可.【详解】解:方程整理得:(m+1)x2+5x+m2-3m-1=0,由常数项为0,得到m2-3m-1=0,即(m-1)(m+1)=0,解得:m=1或m=-1,当m=-1时,方程为5x=0,不合题意,舍去,则m的值为1.故答案为:1.本题考查了一元二次方程的一般形式,以及一元二次方程的定义,将方程化为一般形式是解本题的关键.13、(40﹣x)(30+3x)=3.【解析】试题分析:设每件童裝应降价x元,可列方程为:(40﹣x)(30+3x)=3.故答案为(40﹣x)(30+3x)=3.考点:3.由实际问题抽象出一元二次方程;3.销售问题.三、解答题(本大题共5个小题,共48分)14、(1)甲图书每本价格为75元,乙图书每本价格为30元;(2)图书馆最多可以购买30本乙图书.【解析】
(1)根据题意,可以列出相应的分式方程,从而可以求得乙种图书每本的价格;(2)根据题意可以列出相应的不等式,从而可以求得该图书馆最多可以购买多少本甲种图书。【详解】解:(1)设乙图书每本价格为元,则甲图书每本价格为元.由题意得,,解得.经检验,是原方程的根且符合题意.所以甲图书每本价格为75元,乙图书每本价格为30元.(2)设设购买乙图书本,则购买甲图书本.由题意得,.解得.因为最大可以取30.所以图书馆最多可以购买30本乙图书.本题考查分式方程的应用、-元-次不等式的应用,解答本题的关键是明确题意,列出相应的分式方程和不等式,注意分式方程要检验15、见解析.【解析】
首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.【详解】证明:∵,,∴四边形是平行四边形,又∵四边形是菱形,∴,∴,∴平行四边形是矩形.∴四边形是矩形本题考查了矩形的判定,菱形的性质,掌握矩形的判定和菱形的性质是解题的关键.16、(1)详见解析;(2)详见解析;(3).【解析】
(1)先根据两直线平行内错角相等得出,再根据E为BD中点,和对顶角相等,根据AAS证出≌,从而证出;(2)根据对角线互相平分的四边形是平行四边形,得出四边形ABCD是平行四边形,证出,,在结合已知条件,根据一组对边平行且相等的四边形是平行四边形,从而证出结论;(3)根据平行四边形的对角相等得出,再根据得出,根据勾股定理得出,从而得出四边形ABDF的面积;【详解】证明,,,,≌,;由可知,,四边形ABCD是平行四边形,,,,,,四边形ABDF为平行四边形;四边形ABDF为平行四边形,,AF=BD=2,,,,,
,
根据勾股定理可得:
,四边形ABDF的面积.本题考查了平行四边形的性质和判定,全等三角形的性质和判定以及勾股定理等知识点,熟练掌握相关的知识是解题的关键.17、(1)①详见解析;②60°.(1)IH=FH;(3)EG1=AG1+CE1.【解析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=1∠ADB,推出∠ADB=30°,延长即可解决问题.(1)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=1∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(1)结论:IH=FH.理由:如图1中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=110°,∴∠MIJ+∠BIF=110°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG1=AG1+CE1.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC1+CM1=EM1,∵EG=EM,AG=CM,∴GE1=AG1+CE1.考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.18、(1)(﹣,3)(2)(3)(,)或(﹣,5)或(,﹣)【解析】
(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.【详解】(1)x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC⊥BD,AE=EC==3,∴∠DCA=30°,∠EDC=60°,Rt△DEM中,∠DEM=30°,∴DM=DE=,∵OM⊥AB,∴S菱形ABCD=AC•BD=CD•OM,∴=6OM,OM=3,∴D(﹣,3);(2)∵OB=DM=,CM=6﹣=,∴B(,0),C(,3),∵H是BC的中点,∴H(3,),∴k=3×=;故答案为;(3)①∵DC=BC,∠DCB=60°,∴△DCB是等边三角形,∵H是BC的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2=CP,∴P(,);②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣,6),由①知:F(,2),由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣,6),F(,2),C(,3),∴P(,﹣);综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
根据正方形的性质可得出面积为100、36的正方形的边长,再利用勾股定理即可求出字母A所代表的正方形的边长,此题得解.【详解】面积是100的正方形的边长为10,面积是36的正方形的边长为6,∴字母A所代表的正方形的边长==1.故答案为:1.本题考查了勾股定理以及正方形的性质,牢记“在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方”是解题的关键.20、1【解析】
由根与系数的关系可得a+b=﹣2,a2+2a-9=0,继而将a2+a﹣b变形为a2+2a-(a+b),然后将数值代入进行计算即可得.【详解】∵a,b为一元二次方程x2+2x﹣9=0的两根,∴a+b=﹣2,a2+2a-9=0,∴a2+2a=9,∴a2+a﹣b=a2+2a﹣a-b=(a2+2a)-(a+b)=9+2=1,故答案为1.21、30°【解析】
根据直角三角形的斜边中线性质可得OE=BE=OD,根据菱形性质可得∠DBE=∠ABC=60°,从而得到∠OEB度数,再依据∠OED=90°-∠OEB即可.【详解】∵四边形ABCD是菱形,
∴O为BD中点,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.22、1【解析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:∵,∴,∵,,∴,∴小正方体的面积=大正方形的面积-4个直角三角形的面积=,故答案为:1.此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.23、乙【解析】
根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、解答题(本大题共3个小题,共30分)24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论