四川省眉山一中办学共同体2025届高一数学第一学期期末监测模拟试题含解析_第1页
四川省眉山一中办学共同体2025届高一数学第一学期期末监测模拟试题含解析_第2页
四川省眉山一中办学共同体2025届高一数学第一学期期末监测模拟试题含解析_第3页
四川省眉山一中办学共同体2025届高一数学第一学期期末监测模拟试题含解析_第4页
四川省眉山一中办学共同体2025届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省眉山一中办学共同体2025届高一数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.2.函数的大致图像如图所示,则它的解析式是A. B.C. D.3.已知,则的最小值是()A.2 B.C.4 D.4.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.5.某市政府为了增加农民收入,决定对该市特色农副产品的科研创新和广开销售渠道加大投入,计划逐年加大研发和宣传资金投入.若该政府2020年全年投人资金120万元,在此基础上,每年投入的资金比上一年增长12%,则该政府全年投入的资金翻一番(2020年的两倍)的年份是(参考数据:lg1.12≈0.05,lg2≈0.30)()A.2027年 B.2026年C.2025年 D.2025届6.从800件产品中抽取6件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数开始往右读数(随机数表第7行至第9行的数如下),则抽取的6件产品的编号的75%分位数是()……844217533157245506887704744767217633502583921206766301637859169556671169105671751286735807443952387933211234297864560782524207443815510013429966027954A.105 B.556C.671 D.1697.已知函数,若,,,则实数、、的大小关系为()A. B.C. D.8.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.9.设,且,则等于()A.100 B.C. D.10.已知函数y=log2(x2-2kx+k)的值域为R,则k的取值范围是()A.0<k<1 B.0≤k<1C.k≤0或k≥1 D.k=0或k≥1二、填空题:本大题共6小题,每小题5分,共30分。11.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.12.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________13.已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是____.14.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.15.___________,__________16.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数,且图象的相邻两对称轴间的距离为.(1)求的解析式与单调递减区间;(2)已知在时,求方程的所有根的和.18.解关于的不等式.19.已知的两顶点和垂心.(1)求直线AB的方程;(2)求顶点C的坐标;(3)求BC边的中垂线所在直线的方程.20.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)21.已知圆M与x轴相切于点(a,0),与y轴相切于点(0,a),且圆心M在直线上.过点P(2,1)直线与圆M交于两点,点C是圆M上的动点.(1)求圆M的方程;(2)若直线AB的斜率不存在,求△ABC面积的最大值;(3)是否存在弦AB被点P平分?若存在,求出直线AB的方程;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.2、D【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B;的图象为开口向上的抛物线,显然不适合,故选D点睛:识图常用方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题3、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.4、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.5、B【解析】根据题意列出指数方程,取对数,根据对数的运算性质,结合题中所给的数据进行求解即可.【详解】设第n(n∈N*)年该政府全年投入的资金翻一番,依题意得:120(1+12%)n-1=240,则lg[120(1+12%)n-1]=lg240,∴lg120+(n-1)lg1.12=lg240,∴(n-1)lg1.12=lg2,∴,即该政府全年投入的资金翻一番的年份是2026年,故选:B.6、C【解析】由随机表及编号规则确定抽取的6件产品编号,再从小到大排序,应用百分位数的求法求75%分位数.【详解】由题设,依次读取的编号为,根据编号规则易知:抽取的6件产品编号为,所以将它们从小到大排序为,故,所以75%分位数为.故选:C7、D【解析】根据条件判断函数是偶函数,且当时是增函数,结合函数单调性进行比较即可【详解】函数为偶函数,当时,为增函数,,,,则(1),即,则,故选:8、B【解析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.9、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C10、C【解析】根据对数函数值域为R的条件,可知真数可以取大于0的所有值,因而二次函数判别式大于0,即可求得k的取值范围【详解】因为函数y=log2(x2-2kx+k)的值域为R所以解不等式得k≤0或k≥1所以选C【点睛】本题考查了对数函数的性质,注意定义域为R与值域为R是不同的解题方法,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、8100【解析】将代入,化简即可得答案.【详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.12、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次13、【解析】先求,再根据奇函数求【详解】,因为为奇函数,所以故答案为:【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.14、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.15、①.##-0.5②.2【解析】根据诱导公式计算即可求出;根据对数运算性质可得【详解】由题意知,;故答案为:16、(1)(3)【解析】根据二分法所求零点的特点,结合图象可确定结果.【详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)【解析】(1)将函数变形为,由函数的周期及奇偶性可求解;(2)解方程得或,即或,利用正弦函数的性质可求解.【小问1详解】图象的相邻两对称轴间的距离为,的最小正周期为,即可得,又为奇函数,则,,又,,故的解析式为,令,得函数的递减区间为,.【小问2详解】,,,方程可化为,解得或,即或当时,或或解得或或当时,,所以综上知,在时,方程的所有根的和为18、答案见解析【解析】不等式等价于,再分,和三种情况讨论解不等式.【详解】原不等式可化为,即,①当,即时,;②当,即时,原不等式的解集为;③当,即时,.综上知:当时,原不等式的解集为;当时,原不等式的解集为;当时原不等式的解集为.19、(1);(2);(3).【解析】(1)由两点间的斜率公式求出,再代入其中一点,由点斜式求出直线的方程(也可直接代两点式求解);(2)由题可知,,借助斜率公式,进而可分别求出直线与直线的方程,再联立方程,即可求得点的坐标;(3)由中垂线性质知,边的中垂线的斜率等于,再由(2)可求得边的中点坐标,进而可求解.【详解】(1)由题意,直线的方程为:即:.(2)由题作示意图如下:,直线的方程为:,即:——①又,直线与轴垂直,直线的方程为:——②联立①②,解得,故顶点的坐标为(3)由题意及(2)可知,边的中垂线的斜率等于,边的中点为,故边的中垂线的方程为:【点睛】本题考查直线方程与交点坐标的求法,以及垂心的性质,考查能力辨析能力及运算求解能力,属于中档题.20、(1),(2)13分钟【解析】(1)按照题目所给定的坐标系分别写出和的方程即可;(2)根据零点存在定理判断即可.【小问1详解】可设,∵转动的周期为30分钟,∴,∵枢轮的直径为3.4米,∴,∵点P的初始位置为最高点,∴,∴,∵退水壶内水面位于枢轮中心下方1.19米处,∴水面的初始纵坐标为,∵水位以每分钟0.017米速度下降,∴;【小问2详解】P点进入水中,则,即∴作出和的大致图像,显然在内存在一个交点令,∵,,∴P点进入水中所用时间的最小值为13分钟;综上,,,P点进入水中所用时间的最小值为13分钟.21、(1)(2)(3)存在,方程为【解析】(1)根据圆与坐标轴相切表示出圆心坐标,结合已知可解;(2)注意到当点C到直线AB距离最大值为圆心到直线距离加半径,然后可解;(3)根据圆心与弦的中点的连线垂直弦,或利用点差法可得.【小问1详解】∵圆M与x轴相切于点(a,0),与y轴相切于点(0,a),∴圆M的圆心为M(a,a),半径.又圆心M在直线上,∴,解得.∴圆M的方程为:.【小问2详解】当直线AB的斜率不存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论