2025届浙江省之江教育评价高一上数学期末经典模拟试题含解析_第1页
2025届浙江省之江教育评价高一上数学期末经典模拟试题含解析_第2页
2025届浙江省之江教育评价高一上数学期末经典模拟试题含解析_第3页
2025届浙江省之江教育评价高一上数学期末经典模拟试题含解析_第4页
2025届浙江省之江教育评价高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省之江教育评价高一上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},则AB中所有元素之积A.-8B.-16C.8D.162.已知集合,则()A. B.C. D.3.函数的最小值为()A. B.3C. D.4.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值85.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.6.函数的零点所在的区间为()A.(-1,0) B.(0,)C.(,1) D.(1,2)7.下列各角中,与终边相同的角为()A. B.160°C. D.360°8.已知圆:与圆:,则两圆的位置关系是A.相交 B.相离C.内切 D.外切9.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数10.若,,则的值为()A. B.-C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数.则函数的最大值和最小值之积为______12.若命题“”为真命题,则的取值范围是______13.若的最小正周期为,则的最小正周期为______14.若在幂函数的图象上,则______15.已知非零向量、满足,若,则、夹角的余弦值为_________.16.已知向量、满足:,,,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上的最大值为3,求的值.18.已知二次函数的图象过点,且与轴有唯一的交点.(1)求表达式;(2)设函数,若上是单调函数,求实数的取值范围;(3)设函数,记此函数的最小值为,求的解析式.19.已知函数的图像过点,且图象上与点最近的一个最低点是.(1)求的解析式;(2)求函数在区间上的取值范围.20.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天2620市场价y元10278120(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.21.已知函数(,且).(1)判断函数的奇偶性,并予以证明;(2)求使的x的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】∵集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},∴AB={2,-4,-1},故AB中所有元素之积为:2×(-4)×(-1)=8故选C2、A【解析】对集合B中的分类讨论分析,再根据集合间的关系判断即可【详解】当时,,当时,,当时,,所以,或,或因为,所以.故选:A3、C【解析】运用乘1法,可得,再利用基本不等式求最值即可.【详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4、B【解析】由均值不等式可得答案.【详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B5、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制6、C【解析】应用零点存在性定理判断零点所在的区间即可.【详解】由解析式可知:,∴零点所在的区间为.故选:C.7、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C8、C【解析】分析:求出圆心的距离,与半径的和差的绝对值比较得出结论详解:圆,圆,,所以内切.故选C点睛:两圆的位置关系判断如下:设圆心距为,半径分别为,则:,内含;,内切;,相交;,外切;,外离9、A【解析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数故选A.点睛:本题考查函数的奇偶性单调性,属基础题.10、D【解析】直接利用同角三角函数关系式的应用求出结果.【详解】已知,,所以,即,所以,所以,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、80【解析】根据二次函数的性质直接计算可得.【详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:8012、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:13、【解析】先由的最小正周期,求出的值,再由的最小正周期公式求的最小正周期.【详解】的最小正周期为,即,则所以的最小正周期为故答案为:14、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题15、【解析】本题首先可以根据得出,然后将其化简为,最后带入即可得出结果.【详解】令向量与向量之间的夹角为,因为,所以,即,,,,因为,所以,故答案为:.【点睛】本题考查向量垂直的相关性质,若两个向量垂直,则这两个向量的数量积为,考查计算能力,考查化归与转化思想,是简单题。16、.【解析】将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【详解】,,,因此,,故答案为.【点睛】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.18、(1)(2)或(3)见解析【解析】(1)由已知条件分别求出的值,得出解析式;(2)求出函数的表达式,由已知得出区间在对称轴的一侧,进而求出的范围;(3)函数,对称轴,图象开口向上,讨论不同情况下在上的单调性,可得函数的最小值的解析式试题解析:(1)依题意得,,解得,,,从而;(2),对称轴为,图象开口向上当即时,在上单调递增,当即时,在上单调递减,综上,或(3),对称轴为,图象开口向上当即时,在上单调递增,此时函数的最小值当即时,在上递减,在上递增此时函数的最小值;当即时,在上单调递减,此时函数的最小值;综上,函数的最小值.点睛:本题主要考查了二次函数解析式的求法,二次函数的单调性,二次函数在定区间上的最值问题,属于中档题.解答时要认真审题,仔细解答,注意合理地进行等价转换19、(1);(2).【解析】(1)根据,两点可求出和周期,再由周期公式即可求出,再由即可求出;(2)根据求出函数的值域,再利用换元法令即可求出函数的取值范围.【详解】(1)根据题意可知,,,所以,解得,所以,又,所以,又,所以,所以(2)因为,所以,所以,所以,令,即,则,当时,取得最小值,当时,取得最大值7,故的取值范围是.【点睛】方法点睛:由图象确定系数,通常采用两种方法:①如果图象明确指出了周期的大小和初始值(第一个零点的横坐标)或第二,第三(或第四,第五)点横坐标,可以直接解出和,或由方程(组)求出;②代入点的坐标,通过解最简单的三角函数方程,再结合图象确定和.20、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3)【解析】(1)根据函数的单调性选取即可.(2)把点代入中求解参数,再根据二次函数的最值求解即可.(3)参变分离后再求解最值即可.【详解】(1)随着时间x的增加,y的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意,∴选择.(2)把点代入中,得,解得,∴当时,y有最小值故当纪念章上市10天时,该纪念章的市场价最低,最低市场价为70元,(3)由题意,令,若存在使得不等式成立,则须,又,当且仅当时,等号成立,所以.【点睛】本题主要考查了二次函数模型解决实际问题的题型,需要根据题意求解对应的二次函数式再分析最值与求参数.属于中等题型.21、(1)是奇函数,证明见解析;(2).【解析】(1)先根据对数函数的定义得函数的定义域关于原点对称,再根据函数的奇偶性定义判断即可;(2)由已知条件得,再分与两种情况讨论,结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论