黑龙江省七台河市2025届数学高二上期末达标检测模拟试题含解析_第1页
黑龙江省七台河市2025届数学高二上期末达标检测模拟试题含解析_第2页
黑龙江省七台河市2025届数学高二上期末达标检测模拟试题含解析_第3页
黑龙江省七台河市2025届数学高二上期末达标检测模拟试题含解析_第4页
黑龙江省七台河市2025届数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省七台河市2025届数学高二上期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.2.已知、、、是直线,、是平面,、、是点(、不重合),下列叙述错误的是()A.若,,,,则B.若,,,则C.若,,则D.若,,则3.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除4.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六5.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列6.平行直线:与:之间的距离等于()A. B.C. D.7.设是等差数列的前项和,已知,,则等于()A. B.C. D.8.在空间直角坐标系中,,,若∥,则x的值为()A.3 B.6C.5 D.49.过椭圆+=1左焦点F1引直线交椭圆于A、B两点,F2是椭圆的右焦点,则△ABF2的周长是()A.20 B.18C.10 D.1610.抛物线的准线方程为,则实数的值为()A. B.C. D.11.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.12.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.若等比数列满足,则的前n项和____________14.已知函数在上单调递减,则的取值范围是______.15.某古典概型的样本空间,事件,则___________.16.在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,,D为BC的中点,平面平面ABC(1)证明:;(2)已知四边形是边长为2的菱形,且,问在线段上是否存在点E,使得平面EAD与平面EAC的夹角的余弦值为,若存在,求出CE的长度,若不存在,请说明理由18.(12分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为,其离心率,且椭圆C经过点.(1)求椭圆C的标准方程;(2)过点M作两条不同的直线与椭圆C分别交于点A,B(均异于点M).若∠AMB的角平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.19.(12分)在平面直角坐标系中,已知椭圆的焦点为,且过点,椭圆的上、下顶点分别为,右顶点为,直线过点且垂直于轴(1)求椭圆的标准方程;(2)若点在椭圆上(且在第一象限),直线与交于点,直线与轴交于点,试问:是否为定值?若是,请求出定值;若不是,请说明理由20.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围21.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.22.(10分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C2、D【解析】由公理2可判断A选项;由公理3可判断B选项;利用平行线的传递性可判断C选项;直接判断线线位置关系,可判断D选项.【详解】对于A选项,由公理2可知,若,,,,则,A对;对于B选项,由公理3可知,若,,,则,B对;对于C选项,由空间中平行线的传递性可知,若,,则,C对;对于D选项,若,,则与平行、相交或异面,D错.故选:D.3、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法4、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:5、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.6、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.7、C【解析】依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算8、D【解析】依题意可得,即可得到方程组,解得即可;【详解】解:依题意,即,所以,解得故选:D9、A【解析】根据椭圆的定义求得正确选项.【详解】依题意,根据椭圆的定义可知,三角形的周长为.故选:A10、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B11、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.12、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:14、【解析】先求导,求出函数的单调递减区间,由即可求解.【详解】,令,得,即的单调递减区间是,又在上单调递减,可得,即.故答案为:.15、##0.5【解析】根据定义直接计算得到答案.【详解】.故答案为:.16、(1)(2)【解析】(1)由解出,再由前项和为55求得,由等差数列通项公式即可求解;(2)先求出,再由裂项相消求和即可.【小问1详解】设公差为,由,,成等比数列,可得,即有,整理得,数列的前项和为55,可得,解得1,1,则;【小问2详解】,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在,1【解析】(1)由面面垂直证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.【小问1详解】∵,且D为BC的中点,∴,因为平面平面ABC,交线为BC,AD⊥BC,AD面ABC,所以AD⊥面,因为面,所以.【小问2详解】假设存在点E,满足题设要求连接,,∵四边形为边长为2的菱形,且,∴为等边三角形,∵D为BC的中点∴,∵平面平面ABC,交线为BC,面,所以面ABC,故以D为原点,DC,DA,分别为x,y,z轴的空间直角坐标系则,,,,设,,设面AED的一个法向量为,则,令,则设面AEC的一个法向量为,则,令,则设平面EAD与平面EAC的夹角为,则解得:,故点E为中点,所以18、(1)(2)是,证明见解析【解析】(1)根据离心率及椭圆上的点可求解;(2)根据题意分别设出直线MA、MB,与椭圆联立后得到相关点的坐标,再通过斜率公式计算即可证明.【小问1详解】由,得,所以a2=9b2①,又椭圆过点,则②,由①②解得a=6,b=2,所以椭圆的标准方程为【小问2详解】设直线MA的斜率为k,点,因为∠AMB的平分线与y轴平行,所以直线MA与MB的斜率互为相反数,则直线MB的斜率为-k.联立直线MA与椭圆方程,得整理,得,所以,同理可得,所以,又所以为定值.19、(1)(2)为定值,该定值为2【解析】(1)先根据焦点形式设出椭圆方程和焦距,根据椭圆经过和半焦距为3易得椭圆的标准方程;(2)设,分别表示出直线方程,进而求得点的纵坐标,点横坐标,即可表示出,即可求得答案【小问1详解】由焦点坐标可知,椭圆的焦点在轴上,所以设椭圆:,焦距为,因为椭圆经过点,焦点为所以,,解得,所以椭圆的标准方程为;【小问2详解】设,由椭圆的方程可知,因为,则直线,由已知得,直线斜率均存在,则直线,令得,直线,令得,因为点在第一象限,所以,,则,又因为,即,所以所以为定值,该定值为2.20、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论