版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市人民大学附属中学2025届数学高二上期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.2.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}3.“”是“圆与轴相切”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知抛物线,过点与抛物线C有且只有一个交点的直线有()条A.0 B.1C.2 D.35.函数在处的切线方程为()A. B.C. D.6.已知随机变量服从正态分布,,则()A. B.C. D.7.函数在和处的导数的大小关系是()A. B.C. D.不能确定8.已知向量,,且,则值是()A. B.C. D.9.函数的递增区间是()A. B.和C. D.和10.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.811.下列三个命题:①“若,则a,b全为0”的逆否命题是“若a,b全不为0,则”;②若事件A与事件B互斥,则;③设命题p:若m是质数,则m一定是奇数,那么是真命题;其中真命题的个数为()A.3 B.2C.1 D.012.在中,三个内角A,B,C的对边分别为a,b,c,若,,,则的面积为()A. B.1C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______14.已知为抛物线:的焦点,为抛物线上在第一象限的点.若为的中点,为抛物线的顶点,则直线斜率的最大值为______.15.如图三角形数阵:132456109871112131415……按照自上而下,自左而右的顺序,位于第行的第列,则______.16.函数,则函数在处切线的斜率为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆心为的圆经过,两点,且圆心在直线上,求此圆的标准方程.18.(12分)如图,在四棱锥中,四边形ABCD为正方形,PA⊥底面ABCD,,M,N分别为AB和PC的中点(1)求证:MN//平面PAD;(2)求平面MND与平面PAD的夹角的余弦值19.(12分)已知二次函数,.(1)若,求函数的最小值;(2)若,解关于x的不等式.20.(12分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.21.(12分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围22.(10分)如图,在多面体中,和均为等边三角形,D是的中点,.(1)证明:;(2)若,求多面体的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D2、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.3、A【解析】根据充分不必要条件的定义和圆心到轴的距离求出可得答案.【详解】时,圆的圆心坐标为,半径为2,此时圆与轴相切;当圆与轴相切时,因为圆的半径为2,所以圆心到轴的距离为,所以,“”是“圆与轴相切”的充分不必要条件故选:A4、D【解析】设出过点与抛物线C只有一个公共点且斜率存在的直线方程,再与的方程联立借助判别式计算、判断作答.【详解】抛物线的对称轴为y轴,直线过点P且与y轴平行,它与抛物线C只有一个公共点,设过点与抛物线C只有一个公共点且斜率存在的直线方程为:,由消去y并整理得:,则,解得或,因此,过点与抛物线C相切的直线有两条,相交且只有一个公共点的直线有一条,所以过点与抛物线C有且只有一个交点的直线有3条.故选:D5、C【解析】利用导数的几何意义即可求切线方程﹒【详解】,,,,在处的切线为:,即﹒故选:C﹒6、B【解析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【点睛】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题7、A【解析】求出函数导数即可比较.【详解】,,所以,即.故选:A.8、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.9、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.10、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.11、B【解析】写出逆否命题可判断①;根据互斥事件的概率定义可判断②;根据写出再判断真假可判断③.【详解】对于①,“,则a,b全为0”的逆否命题是“若a,b不全为0,则”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;③命题p:若m是质数,则m一定是奇数.2是质数,但2是偶数,命题p是假命题,那么真命题故选:B.12、C【解析】由余弦定理求出,利用正弦定理将边化角,再根据二倍角公式得到,即可得到,最后利用面积公式计算可得;【详解】解:因为,又,所以,因为,所以,所以,因为,所以,即,所以或,即或(舍去),所以,因为,所以,所以;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:14、1【解析】由题意,可得,设,,,根据是线段的中点,求出的坐标,可得直线的斜率,利用基本不等式即可得结论【详解】解:由题意,可得,设,,,,是线段的中点,则,,,当且仅当时取等号,直线的斜率的最大值为1故答案为:115、【解析】由题意可知到第行结束一共有个数字,由此可知在第行;又由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行个数字从大到小排列,由此可知在到数第列,据此即可求出,进而求出结果.【详解】由图可知,第1行有1个数字,第2行有2个数字,第2行有3个数字,……第行有个数字,由此规律可知,到第行结束一共有个数字;又当时,,所以第行结束一共有个数字;当时,,所以在第行,故;由图可知,奇数行从左到右是从小到大排列,偶数行从左到右是从大到小排列,第行是偶数行,共个数字,从大到小排列,所以在倒数第列,所以,所以.故答案为:.16、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】设圆心坐标为,根据两点在圆上利用两点的距离公式建立关于的方程,解出值.从而求出圆的圆心和半径,可得圆的方程【详解】解:∵圆心在直线,∴设圆心坐标为,根据点和在圆上,可得解之得.∴圆心坐标为,半径.因此,此圆的标准方程是18、(1)证明见解析;(2).【解析】(1)在平面中构造与平行的直线,利用线线平行推证线面平行即可;(2)以为坐标原点建立空间直角坐标系,分别求得两个平面的法向量,利用向量法即可求得两个平面夹角的余弦值.【小问1详解】取中点为,连接,如下所示:因为为正方形,为中点,故可得//;在△中,因为分别为的中点,故可得//;故可得//,则四边形为平行四边形,即//,又面面,故//面.【小问2详解】因为面面,故可得,又底面为正方形,故可得,则两两垂直;故以为坐标原点,以分别为轴建立空间直角坐标系如下所示:故可得,设平面的法向量为,又则,即,不妨取,则,则,取面的法向量为,故.设平面的夹角为,故可得,即平面MND与平面PAD的夹角的余弦值为.19、(1)(2)当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为【解析】(1)带入,将化解为,再利用基本不等式求最值即可;(2)将不等式移项整理为,再对a分类讨论,比较两根的大小,即可求得解集.【小问1详解】当a=3时,函数可整理为,因为,所以利用基本不等式,当且仅当,即时,y取到最小值.所以,当时,函数的最小值为.【小问2详解】将不等式整理为,令,即,解得两根为与1,因为,当时,即时,此时的解集为;当时,即时,此时的解集为;当时,即时,此时的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.20、(1)(2)不一定共线,理由见解析【解析】(1)由椭圆定义可得a,利用∽△BOA可解;(2)考察轴时的情况,分析可知M,,N不一定共线.【小问1详解】由题意得,,设,,代入椭圆C的方程得,,可得.可得.由,,所以∽△BOA,所以,即,可得.又,,得.所以椭圆C的方程为.【小问2详解】当轴时,,设,,则由已知条件和方程,可得,整理得,,解得或.由于,所以当时,点M,,N共线;所以当时,点M,,N不共线.所以点M,,N不一定共线.21、(1)(2)【解析】(1)由等比数列的基本量,列式,即可求得首项和公比,再求通项公式;(2)由题意转化为求数列的前项和的最大值,即可求参数的取值范围.【小问1详解】设等比数列的公比为,则,①,即,得,即,代入①得,解得:,所以;【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全准入考试题库(监理-基建-变电)专项试卷
- 飞翔的电梯课件
- 热射病治疗方案
- 2024年河南省郑州经济技术开发区某中学中考物理
- 《鲁布革招标案例》课件
- 意外跌落如何急救护理
- 知识产权贯标合同范本版
- 合作社合作合同协议书范本完整版
- 楼梯扶手装修合同范本较新版-装修合同
- 对外商务汉语课件
- 广州中医药大学辅导员考试题库
- 水利工程实验室量测作业指导书
- 电工与电子基础技术习题集参考答案
- 能源管理体系内审检查表及能源管理体系内部审核检查表
- 《中国近代史》第一章 国门洞开
- 学生实习就业推荐表
- 意向性和と思う课件 高考日语复习
- ArcGIS简介与应用基础
- 急性冠脉综合征
- 西门子g120中文说明书
- 数字媒体应用技术
评论
0/150
提交评论