![吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2025届高二数学第一学期期末预测试题含解析_第1页](http://file4.renrendoc.com/view9/M01/0C/38/wKhkGWcaf3uAd2-FAAH_Gkljj0g396.jpg)
![吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2025届高二数学第一学期期末预测试题含解析_第2页](http://file4.renrendoc.com/view9/M01/0C/38/wKhkGWcaf3uAd2-FAAH_Gkljj0g3962.jpg)
![吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2025届高二数学第一学期期末预测试题含解析_第3页](http://file4.renrendoc.com/view9/M01/0C/38/wKhkGWcaf3uAd2-FAAH_Gkljj0g3963.jpg)
![吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2025届高二数学第一学期期末预测试题含解析_第4页](http://file4.renrendoc.com/view9/M01/0C/38/wKhkGWcaf3uAd2-FAAH_Gkljj0g3964.jpg)
![吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2025届高二数学第一学期期末预测试题含解析_第5页](http://file4.renrendoc.com/view9/M01/0C/38/wKhkGWcaf3uAd2-FAAH_Gkljj0g3965.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省舒兰一中、吉化一中、九台一中、榆树实验中学等八校联考2025届高二数学第一学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴广交会的四个不同地方服务,不同的分配方案有()种A.· B.·C. D.2.已知点是抛物线上的动点,过点作圆的切线,切点为,则的最小值为()A. B.C. D.3.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得4.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.5.已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3 B.4C.7 D.106.圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A. B.C. D.7.若抛物线与直线:相交于两点,则弦的长为()A.6 B.8C. D.8.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.已知椭圆的长轴长是短轴长的倍,左焦点、右顶点和下顶点分别为,坐标原点到直线的距离为,则的面积为()A. B.4C. D.10.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③11.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.12.双曲线:的实轴长为()A. B.C.4 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知斜率为1的直线经过椭圆的左焦点,且与椭圆交于,两点,若椭圆上存在点,使得的重心恰好是坐标原点,则椭圆的离心率______.14.已知点和,M是椭圆上一动点,则的最大值为________.15.直线与圆相交于A,B两点,则的最小值为__________.16.若函数在处取得极小值,则a=__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的首项为2,公差为8.在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列.(1)求数列的通项公式;(2)若,,,,是从中抽取的若干项按原来的顺序排列组成的一个等比数列,,,令,求数列的前项和.18.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率19.(12分)已知数列满足(1)求;(2)若,且数列的前n项和为,求证:20.(12分)已知等比数列的前项和为,且.(1)求数列的通项公式;(2)令,求数列的前项和.21.(12分)已知椭圆的离心率为,短轴长为2(1)求椭圆的方程;(2)设过点且斜率为的直线与椭圆交于不同的两点,,求当的面积取得最大值时的值22.(10分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先按要求分为四组,再四个不同地方,四个组进行全排列.【详解】两个组各2人,两个组各1人,属于部分平均分组,要除以平均分组的组数的全排列,故分组方案有种,再将分得的4组,分配到四个不同地方服务,则不同的分配方案有种.故选:B2、C【解析】分析可知圆的圆心为抛物线的焦点,可求出的最小值,再利用勾股定理可求得的最小值.【详解】设点的坐标为,有,由圆的圆心坐标为,是抛物线的焦点坐标,有,由圆的几何性质可得,又由,可得的最小值为故选:C.3、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B4、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.5、D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则故选D【点睛】本题考查抛物线定义的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.6、A【解析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【点睛】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.7、B【解析】由题得抛物线的焦点坐标为刚好在直线上,再联立直线和抛物线的方程,利用韦达定理和抛物线的定义求解.【详解】解:由题得.由题得抛物线的焦点坐标为刚好在直线上,设,联立直线和抛物线方程得,所以.所以.故选:B8、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.9、C【解析】设,根据题意,可知的方程为直线,根据原点到直线的距离建立方程,求出,进而求出,的值,以及到直线的距离,再根据面积公式,即可求出结果.【详解】设,由题意可知,其中,所以的方程为,即所以原点到直线的距离为,所以,即,;所以直线的方程为,所以到直线的距离为;又,所以的面积为.故选:C.10、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.11、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.12、A【解析】根据双曲线的几何意义即可得到结果.【详解】因为双曲线的实轴长为2a,而双曲线中,,所以其实轴长为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设点,,坐标分别为,则根据题意有,分别将点,,的坐标代入椭圆方程得,然后联立直线与椭圆方程,利用韦达定理得到和的值,代入得到关于的齐次式,然后解出离心率.【详解】设,,坐标分别为,因为的重心恰好是坐标原点,则,则,代入椭圆方程可得,其中,所以……①因为直线的斜率为,且过左焦点,则的方程为:,联立方程消去可得:,所以,……②所以……③,将②③代入①得,从而.故答案为:【点睛】本题考查椭圆的离心率求解问题,难度较大.解答时,注意,,三点坐标之间的关系,注意韦达定理在解题中的运用.14、【解析】由题设条件可知,.当M在直线与椭圆交点上时,在第一象限交点时有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值.由此能够求出的最大值.【详解】解:A为椭圆右焦点,设左焦点为,则由椭圆定义,于是.当M不在直线与椭圆交点上时,M、F、B三点构成三角形,于是,而当M在直线与椭圆交点上时,在第一象限交点时,有,在第三象限交点时有.显然当M在直线与椭圆第三象限交点时有最大值,其最大值为.故答案为:.【点睛】本题考查椭圆的基本性质,解题时要熟练掌握基本公式.15、【解析】直线过定点,圆心,当时,取得最小值,再由勾股定理即可求解.【详解】由,得,由,得直线过定点,且在圆的内部,由圆可得圆心,半径,当时,取得最小值,圆心与定点的距离为,则的最小值为.故答案为:.16、2【解析】对函数求导,根据极值点得到或,讨论的不同取值,利用导数的方法判定函数单调性,验证极值点,即可得解.【详解】由可得,因为函数在处取得极小值,所以,解得或,若,则,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极小值,符合题意;当时,,当时,,则单调递增;当时,,则单调递减;当时,,则单调递增;所以函数在处取得极大值,不符合题意;综上:.故答案为:2.【点睛】思路点睛:已知函数极值点求参数时,一般需要先对函数求导,根据极值点求出参数,再验证所求参数是否符合题意即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由题意在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列,可知的公差,进而可求出其通项公式;(2)根据题意可得,进而得到,再代入中得,利用错位相减即可求出前项和.【小问1详解】由于等差数列的公差为8,在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列,则的公差,的首项和首项相同为2,则数列的通项公式为.【小问2详解】由于,是等比数列的前两项,且,,则,则等比数列的公比为3,则,即,.①.②.①减去②得..18、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,设圆心,由可得,解得,则圆心,所以,圆的半径为,因此,圆的标准方程为.【小问2详解】解:由题意可知,直线截圆所得的弦在圆上对应的圆心角为,则圆心到直线的距离为,由点到直线的距离公式可得,解得.19、(1)(2)证明见解析【解析】(1)先求得,猜想,然后利用数学归纳法进行证明.(2)利用放缩法证得结论成立.【小问1详解】依题意,,,,猜想,下面用数学归纳法进行证明:当时,结论成立,假设当时结论成立,即,由,,所以当时,有,结论成立,所以当时,.【小问2详解】由(1)得,且为单调递增数列,所以.所以.20、(1)(2)【解析】(1)根据得到,再结合为等比数列求出首项,进而求得数列的通项公式;(2)由(1)求得数列的通项公式,进而利用公式法即可求出【小问1详解】解:(1),,当时,,即,又,为等比数列,所以,,数列的通项公式为【小问2详解】(2)由(1)知,则,数列的前项和21、(1);(2).【解析】(1)由短轴长得,由离心率处也的关系,从而可求得,得椭圆方程;(2)设,,直线的方程为,代入椭圆方程应用韦达定理得,由弦长公式得弦长,求出原点到直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人雇佣钟点工劳务合同
- 文化创意产业数字化升级投资合同
- 信息安全保障服务合同
- 个人收入证明收入证明协议年
- 设备材料买卖合同
- 智能车辆研发合作协议
- 青岛二手房买卖合同的
- 爆破工程承包合同与爆破承包合同
- 装饰材料购销合同
- 装载机司机雇佣合同
- SH/T 1627.1-1996工业用乙腈
- GB/T 5534-2008动植物油脂皂化值的测定
- GB/T 12771-2019流体输送用不锈钢焊接钢管
- 测量管理体系内审检查表
- 工程验收及移交管理方案
- 心脏手术麻醉的一般流程课件
- 图片编辑概述课件
- 2023年岳阳职业技术学院单招职业技能考试笔试题库及答案解析
- 信号与系统复习题及答案
- 北师大版八年级数学上册《认识无理数(第2课时)》参考课件2
- 中级建构筑物消防员理论综合模拟题01原题
评论
0/150
提交评论