专题244垂径定理及其推论(举一反三)(沪科版)_第1页
专题244垂径定理及其推论(举一反三)(沪科版)_第2页
专题244垂径定理及其推论(举一反三)(沪科版)_第3页
专题244垂径定理及其推论(举一反三)(沪科版)_第4页
专题244垂径定理及其推论(举一反三)(沪科版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题24.4垂径定理及其推论【十大题型】【沪科版】 TOC\o"13"\h\u【题型1由垂径定理及其推论判断正误】 1【题型2根据垂径定理与勾股定理综合求值】 3【题型3根据垂径定理与全等三角形综合求值】 8【题型4在坐标系中利用垂径定理求值或坐标】 14【题型5利用垂径定理求平行弦问题】 19【题型6利用垂径定理求同心圆问题】 23【题型7垂径定理的实际应用】 27【题型8垂径定理在格点中的运用】 33【题型9利用垂径定理求整点】 38【题型10利用垂径定理求最值或取值范围】 41【知识点1垂径定理及其推论】(1)垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)垂径定理的推论

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.

推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【题型1由垂径定理及其推论判断正误】【例1】(2023春·九年级单元测试)如图,CD是⊙O的直径,弦AB⊥CD于点E,连接BC、BD,下列结论中不一定正确的是(A.AE=BE B.AD=BD C.【答案】C【分析】根据垂径定理判断即可;【详解】∵直径CD垂直于弦AB于点E,则由垂径定理可得,AE=BE,AD=BD,AC=BC,故选项A,B,故选C.【点睛】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.【变式11】(2023春·北京海淀·九年级人大附中校考阶段练习)在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是A.甲对乙错 B.甲错乙对 C.甲乙都对 D.甲乙都错【答案】D【分析】根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也相等,可判断甲命题;由垂径定理可得判断乙命题.【详解】(1)在同圆或等圆中,相等的弦所对的弧对应相等,故甲命题错误;(2)平分弦的直径垂直于不是直径的弦;故乙命题项错误;故选D.【点睛】本题主要考查同圆或等圆中,弧、弦、圆心角的关系及垂径定理.【变式12】(2023春·全国·九年级专题练习)下列命题正确的是(

)A.垂直于弦的直径平分弦所对的两条弧 B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦 D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.【变式13】(2023·福建三明·泰安模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.DE=BE B.BCC.△BOC是等边三角形 D.四边形ODBC是菱形【答案】B【详解】试题分析:∵AB⊥CD,AB过O,∴DE=CE,BC=根据已知不能推出DE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选B.【考点】垂径定理.【题型2根据垂径定理与勾股定理综合求值】【例2】(2023·贵州遵义·统考三模)在半径为r的圆中,弦BC垂直平分OA,若BC=6,则r的值是(

A.3 B.33 C.23 D【答案】C【分析】设BC、OA交于D,根据题意和垂径定理得到OD=12【详解】解:设BC、OA交于∵弦BC垂直平分OA,BC=6∴OD=在Rt△OBD中,由勾股定理得∴r2解得r=2故选C.

【点睛】本题主要考查了勾股定理和垂径定理,利用方程的思想求解是解题的关键.【变式21】(2023春·浙江·九年级统考阶段练习)如图,已知⊙O的半径为5,弦AB=8,点E在AB上运动,连结OE,过点E作EF⊥OE交⊙O于点F,当EF最大时,OE+EF的值为.【答案】7【分析】当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,根据垂径定理得到BE=4,根据勾股定理得到OE=OB【详解】解:当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,∵AB=8,∴BE=4,∵OB=5,∴OE=OB2∴OE+EF=OE+OB=7,故答案为7.【点睛】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.【变式22】(2023·湖北孝感·校联考一模)如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于D交AC于E点,已知⊙O的半径为1,则AE2+CA.1 B.2 C.3 D.4【答案】B【分析】连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EAO=∠EBO=∠ACO,根据勾股定理计算即可.【详解】解:连接BE,如图,∵OD⊥AB,∴AD=DB,∴EA=EB,∠EAO=∠EBO=∠ACO,∵∠ECB+∠EBC=∠ECO+45°+∠EBC=∠OBE+45°+∠EBC=90°,∴∠BEC=90°,在直角△BEC中,BE2+CE2=BC2,∵OC⊥OB,且OC=OB=OA∴BC2=2OA2=2,∴BE2+CE2=2,即AE2+CE2=2.故选:B.【变式23】(2023春·江苏泰州·九年级校考阶段练习)如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变),PM【答案】(1)214;(2)217;(3【分析】(1)作OH⊥MN于H,连接ON,先计算出OA=4,OP=2,在Rt△POH中,由于∠OPH=45°,则OH=22OP=2,再在Rt△OHN中,利用勾股定理计算出NH=14,然后根据垂径定理由OH⊥MN得到HM=HN,所以MN=2NH=214(2)作OH⊥MN于H,连接ON,先计算出HM=HN=4,PH=1,在Rt△POH中,由∠OPH=45°得到OH=1,再在Rt△OHN中利用勾股定理可计算出ON=17,所AB=2ON=217;(3)作OH⊥MN于H,连接ON,根据垂定理得HM=HN,设圆的半径为R,在Rt△OHN中,利用勾股定理得到OH2+NH2=ON2=R2,在Rt△POH中,由∠OPH=45°得OH=PH,则PH2+NH2=R2,然后变形PM2+PN2可得到2(PH2+NH2),所以PM2+PN2的值为2R2,又AB=2R,代入计算即可求出答案.【详解】解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴OH=22OP=2在Rt△OHN中,∵ON=4,OH=2,∴NH=NO2-OH∵OH⊥MN,∴HM=HN,∴MN=2NH=214;(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴ON=OH2+∴AB=2ON=217;(3)PM2+作OH⊥MN于H,连接ON,则HM=HN,设圆的半径为R,在Rt△OHN中,OH2+NH2=ON2=R2,在Rt△POH中,∵∠OPH=45°,∴OH=PH,∴PH2+NH2=R2,∵PM2+PN2=(HMPH)2+(NH+PH)2=(NHPH)2+(NH+PH)2=2(PH2+NH2)=2R2.又AB2=4R2,∴PM2+P∴PM2+【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.【题型3根据垂径定理与全等三角形综合求值】【例3】(2023春·江苏·九年级专题练习)如图,⊙O的弦AB垂直于CD,点E为垂足,连接OE.若AE=1,AB

A.22 B.32 C.42【答案】A【分析】如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,根据垂径定理可求出EH的值,再证【详解】解:如图所示,过O点作OH⊥AB于H点,OF⊥CD于

∴根据垂径定理得,DF=CF=∵AE=1∴EH=在Rt△OBH和OB=∴Rt△∴OH=∵CD⊥∴∠HEF∵∠OHE∴四边形OHEF为正方形,OE是正方形的对角线,∴OE=故选:A.【点睛】本题考查圆与三角形的综合,掌握圆的基础值,垂径定理,全等三角形的判定和性质,正方形的判定和性质等知识的综合运用是解题的关键.【变式31】(2023春·全国·九年级专题练习)如图,AB为圆O直径,F点在圆上,E点为AF中点,连接EO,作CO⊥EO交圆O于点C,作CD⊥AB于点D,已知直径为10,OE=4,求OD的长度.【答案】3【分析】根据垂径定理的逆定理得到OE⊥AF,由CO⊥EO,得到OC∥AF,即可得到∠OAE=∠COD,然后通过证得△AEO≌△ODC,证得CD=OE=4,然后根据勾股定理即可求得OD.【详解】解:∵E点为AF中点,∴OE⊥AF,∵CO⊥EO,∴OC∥AF,∴∠OAE=∠COD,∵CD⊥AB,∴∠AEO=∠ODC,在△AEO和△ODC中,∠OAE∴△AEO≌△ODC(AAS),∴CD=OE=4,∵OC=5,∴OD=OC2-CD2【点睛】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键【变式32】(2023·上海·统考中考真题)已知:在圆O内,弦AD与弦BC交于点G,AD=CB,M,(1)求证:OG⊥(2)联结AC,AM,CN,当【答案】(1)见解析;(2)见解析【分析】(1)连结OM,ON,由M、N分别是CB和AD的中点,可得OM⊥BC,ON⊥AD,由AB=CD,可得OM=ON,可证(2)设OG交MN于E,由RtΔEOP≌RtΔFOP,可得MG=NG,可得∠CMN=∠ANM,CM=12CB=12AD=AN,可证△CMN≌△ANM可得【详解】证明:(1)连结OM,∵M、N分别是CB和AD的中点,∴OM,ON为弦心距,∴OM⊥BC,ON⊥AD,∴∠GMO在⊙O中,AB=∴OM在Rt△OMG和Rt△ONG中,OM=∴RtΔGOM∴MG=∴OG(2)设OG交MN于E,∵RtΔGOM∴MG=∴∠GMN=∠GNM∵CM在△CMN和△ANM中CM=∴△CMN∴AM∵CN∥OG,∴∠CNM∴∠AMN∴∠AM∴AM∥CN,∴ACNM∵∠AMN∴四边形ACNM是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.【变式33】(2023春·江西赣州·九年级统考期末)按要求作图(1)如图1,已知AB是⊙O的直径,四边形ACDE为平行四边形,请你用无刻度的直尺作出∠AOD的角平分线(2)如图2,已知AB是⊙O的直径,点C是BD的中点,AB∥CD,请你用无刻度的直尺在射线DC上找一点P【答案】(1)见解析(2)见解析【分析】(1)连接AD,EC交于点F,作射线OF交⊙O于点P,OP(2)连接DB,OC交于点E,作射线AE交DC于点P,四边形ABPD即为所求.【详解】(1)解:如图1,连接AD,EC交于点F,作射线OF交⊙O于点P,OP∵四边形ACDE为平行四边形,∴AF∵OA∴OP是∠AOD(2)如图2,连接OD,连接DB,OC交于点E,作射线AE交射线DC于点P,四边形ABPD即为所求;∵点C是BD的中点,∴OC∵OD∴DE∵AB∴∠ABE在△ABE与△∠ABE∴△ABE∴AB∵AB∥∴四边形ABPD是平行四边形.【点睛】本题考查了平行四边形的性质与判定,垂径定理,三线合一,掌握以上知识是解题的关键.【题型4在坐标系中利用垂径定理求值或坐标】【例4】(2023春·九年级单元测试)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图像被⊙A.4 B.3+2 C.32 D【答案】B【分析】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,求出D点坐标为(3,3),可得△OCD为等腰直角三角形,从而△PED也为等腰直角三角形.根据垂径定理得AE=【详解】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于∵⊙P的圆心坐标是(3,∴OC=3,把x=3代入y=x∴D点坐标为(3,3),∴CD=3∴△OCD∴∠PDE∵PE⊥∴△PED为等腰直角三角形,AE在Rt△PBE中,∴PE=∴PD=∴a=3+故选B.【点睛】本题考查了一次函数的性质,勾股定理,等腰直角三角形的判定与性质,以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.正确作出辅助线是解答本题的关键.【变式41】(2023·全国·九年级专题练习)如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标是(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求点C的坐标.【答案】点C的坐标为(1,3)【分析】连接CM,作MN⊥CD于N,CH⊥OA于H,根据题意得CD=OB=8,CN=MH,CH=MN,根据垂径定理得出CN=DN=12【详解】解:如图,连接CM,作MN⊥CD于N,CH⊥∵四边形OCDB为平行四边形,B点的坐标是(8,0),∴CD=OB=8,又∵MN∴CN=DN=∵点A的坐标是(10,0),∴OA∴MO在Rt△MNC中,MN=CM2-C∴CH=3.又∴点C的坐标为(1,3).【点睛】本题考查了平行四边形的性质,坐标与图形,垂径定理,勾股定理,掌握垂径定理是解题的关键.【变式42】(2023·江苏南京·九年级专题练习)如图,在平面直角坐标系中,一个圆与两坐标轴分别交于A、B、C、D四点.已知A(6,0),B(﹣2,0),C(0,3),则点D的坐标为.【答案】(0,-4)【详解】设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,先根据垂径定理可得EA=EB=4,FC=FD,进而可求出OE=2,再设P(2,m),即可利用勾股定理表示出PC2,PA2,最后利用PA=PA列方程即可求出m值,进而可得点D坐标.【解答】解:设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,则EA=EB=AB2=4,FC=FD∴OE=EB﹣OB=4﹣2=2,∴E(2,0),设P(2,m),则F(0,m),连接PC、PA,在Rt△CPF中,PC2=(3﹣m)2+22,在Rt△APE中,PA2=m2+42,∵PA=PC,∴(3﹣m)2+22=m2+42,∴m=±1∴F(0,-1∴CF=DF=3-(-12)∴OD=OF+DF=12+7∴D(0,﹣4),故答案为:(0,﹣4).【点睛】本题考查垂径定理,涉及到平面直角坐标系,勾股定理等,解题关键是利用半径相等列方程.【变式43】(2023春·湖北鄂州·九年级校联考期末)如图,在平面直角坐标系中,⊙O经过点0,10,直线y=kx+2k-4与⊙O交于A.62 B.103 C.8【答案】C【分析】易知直线y=kx+2k-4过定点D(-2,-4),运用勾股定理可求出OD,由⊙O经过点【详解】解:对于直线y=当x=-2时,y故直线y=kx+2k-由于过圆内定点D的所有弦中,与OD垂直的弦最短,即当OD⊥BC时,连接OB,如图所示,∵D(-2,-4)∴OD=∵⊙O经过点0,10∴OB=10∴BD=∵OB⊥∴BC=2∴弦BC的最小值是85故选:C.【点睛】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(-2,-4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该题的关键.【题型5利用垂径定理求平行弦问题】【例5】(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,

过点O作OF⊥AB,垂足为F,交CD于点E,连接∵AB∥∴OE⊥∵AB=12∴CE=8∵OA=∴由勾股定理得:EO=102∴EF=②当弦AB与CD在圆心异侧时,如图,

过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接同理EO=102EF=所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.【变式51】(2023春·浙江杭州·九年级校考阶段练习)如图,矩形ABCD与圆心在AB上的☉O交于点G,B,F,E,GB=5,EF=4,那么AD=.【答案】3【分析】连接OF,过点O作OH⊥EF,垂足为H,根据垂径定理,在△OHF中,勾股定理计算.【详解】如图,连接OF,过点O作OH⊥EF,垂足为H,则EH=FH=12EF=2∵GB=5,∴OF=OB=52在△OHF中,勾股定理,得OH=(5∵四边形ABCD是矩形,∴四边形OADH也是矩形,∴AD=OH=32故答案为:32【点睛】本题考查了垂径定理、勾股定理,熟练掌握两个定理是解题的关键.【变式52】(2023春·九年级课时练习)如图,AB,CD是半径为15的⊙O的两条弦,AB=24,CD=18,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上任意一点,则PA+PC的最小值为.【答案】21【分析】由于A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的值最小,即BC的值就是PA+PC的最小值.【详解】解:连接BC,OB,OC,作CH垂直于AB于H.∵AB=24,CD=18,MN是直径,AB⊥MN于点E,CD⊥MN于点F,∴BE=12AB=12,CF=12CD=∴OE=OB∴CH=OE+OF=9+12=21,BH=BE+EH=BE+CF=12+9=21,在Rt△BCH中,根据勾股定理得:BC=即PA+PC的最小值为212故答案为:212【点睛】本题考查垂径定理以及最短路径问题,灵活根据垂径定理确定最短路径是解题关键.【变式53】(2023·全国·九年级专题练习)如图,A,B,C,D在⊙O上,AB//CD经过圆心O的线段EF⊥AB于点F,与CD交于点E(1)若AB=6,CD=8,求(2)若CD=46,且EF=【答案】(1)7;(2)8【分析】(1)连接AO和DO,由垂径定理得AF=12AB=3,再由勾股定理求出OF(2)连接BO和DO,先由垂径定理和勾股定理求出OE的长,设EF=BF=x,在Rt△OBF中,利用勾股定理列式求出【详解】解:(1)连接AO和DO,∵EF⊥AB,且∴AF=∵AO=5∴OF=∵AB//∴EF⊥同理DE=OE=∴EF=(2)如图,连接BO和DO,∵CD=4∴DE=2∴OE=设EF=BF=在Rt△OBF中,x-12+x∴BF=4∴AB=2【点睛】本题考查垂径定理,解题的关键是熟练掌握垂径定理,并能够结合勾股定理进行运用求解.【题型6利用垂径定理求同心圆问题】【例6】(2023春·湖北孝感·九年级校联考阶段练习)如图,两个圆都是以O为圆心.(1)求证:AC=(2)若AB=10,BD=2,小圆的半径为5,求大圆的半径【答案】(1)见解析;(2)41【分析】(1)作OE⊥AB,由垂径定理得AE=BE,CE=DE,即可得到(2)连接OB,OD,由AB=10,则BE=5,由勾股定理,得OE2=OD2【详解】解:(1)如图:作OE⊥AB于由垂径定理,得:AE=BE,∴BE-即AC=(2)如图,连接OD,OB,∵AB=10,∴BE=AE=5,DE=52=3,在Rt△OBE和Rt△ODE中,由勾股定理,得:OE2=∴OD2-即52解得:OB=∴大圆的半径为41.【点睛】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理和勾股定理进行计算是解题的关键.【变式61】(2023春·浙江台州·九年级统考期末)如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为cm【答案】134【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答.【详解】解:设弧AB所在的圆的半径为r,如图.作OE⊥AB于E,连接OA,OC,则OA=r,OC=r+32,∵OE⊥AB,∴AE=EB=100cm,在RT△OAE中OE在RT△OCE中,OE则r2解得:r=134.故答案为:134.【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.【变式62】(2023春·九年级课时练习)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是()cm.A.6 B.42 C.43 D【答案】C【分析】作OD⊥AB于C,交小圆于D,可得CD=2,AC=BC,由AO、BO为半径,则OA=OD=4;然后运用勾股定理即可求得AC的长,即可求得AB的长.【详解】解:作OD⊥AB于C,交小圆于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,∴AC=OA∴AB=2AC=43故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论