《车用驱动电机原理与控制基础 第2版》 课件全套 钟再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第1页
《车用驱动电机原理与控制基础 第2版》 课件全套 钟再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第2页
《车用驱动电机原理与控制基础 第2版》 课件全套 钟再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第3页
《车用驱动电机原理与控制基础 第2版》 课件全套 钟再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第4页
《车用驱动电机原理与控制基础 第2版》 课件全套 钟再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第5页
已阅读5页,还剩255页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1

Introduction21.1TheBriefHistoryofElectricMotors1)“AccumulationofMotorTechnologyStage”:Theoriginofmotortechnologycanbetracedbackto1831whenFaradayinventedthedisc-typemotor.Theperiodtilltothesuccessfulinventionofthehigh-powerdirectcurrentgeneratorsin1866canbecalled“accumulationofmotortechnologystage”.2)“IndustrialApplicationofDCMotors”:In1866,theGermanengineerSiemenssuccessfullydevelopedself-excitedandcompound-woundhigh-powerDCgenerators,markingthebeginningoftheconversionofhigh-powermechanicalenergyintoelectricalenergy,andsparkingthelate19th-century“electrification”revolution.Thedevelopmentofmotortechnologyalsoentereditsfirstgoldendevelopmentperiod:“thematurestageofthemotortechnology.3)“InventionofACMotors”:Inthefirsthalfofthe19thcentury,variousACmotorswerecontinuouslyinventedanddeveloped,usheringinthefirstgoldenageofextensiveindustrialapplicationsofmotors.

4)“PowerElectronicsEnabledSpeedControlofACMotors”:ThedevelopmentofpowersemiconductortechnologygreatlypromotestheadvancementofthespeedcontroltechnologyofACmotors.Fig.1-1PhysicalModelandCircuitDiagramofFaraday'sDiscGeneratorin1831Fig.1-2DiagramoftheMotorInventedbySteckinFig.1-3DiagramoftheMotorInventedbyPixie31.2CharacteristicsandCommonTypesofVehicleDriveMotorsDuetothespecificapplicationrequirementsinelectricvehicles,vehicledrivemotorshavedistinctivetechnicalcharacteristics:1)HighPower-to-WeightRatio:Lightweightisdirectlycontributedtovehicle'sefficiency,sounlikeindustrialmotorsforfixedapplicationequipment,vehicledrivemotorsgenerallyrequirethehighestpossiblepower-to-weightratio.2)HighPower-to-VolumeRatio:Optimizingtheavailablespaceinvehiclesisacontinuouslychallenge.Amorecompactmotorsystemmakesiteasiertomeetthevehicle'sneedsandallowsfordeeperintegrationforthesystemdesign.Therefore,thepower-to-volumeratioofthemotorshouldbeashighaspossible.3)HighEfficiency:Pursuinghighefficiencyisafundamentalrequirementforallmotorapplications.Oneofthekeycharacteristicsofvehicledrivemotorsisthattheyshouldhaveabroadhigh-efficiencyrange.It'snotjustabouthavinghighefficiencyatspecificoperatingpointsbuthavinghighefficiencyacrossawiderangeofspeedsandtorquestomeethighefficiencyrequirementsundervariousdrivingconditions.4)WideSpeedRange:Exceptforafewmodelsthatusegearboxeswithmultiplespeedratios,mostelectricvehicleshaveasinglefixed-ratioreducer.Tomeettheneedsofbothhigh-speeddrivingandlow-speedclimbing,vehicledrivemotorsmusthaveaverywidespeedrange.5)FastTorqueDynamicResponse:Vehicledrivemotorsoperatecontinuouslyundervaryingconditions.Afasttorquedynamicresponseisessentialforthedrivingexperienceofthedriverandacorekeyindicatorrelatedtothevehicle'ssafetyfunctions.6)HighShort-TimePeakPower:Thecontinuouspowerrequiredforsteady-statedrivingissignificantlylowerthantheshort-termpeakpowerneededforaccelerationconditions.However,accelerationconditionshavearelativelyshortduration.Therefore,thedifferencebetweenthe(short-term)peakpowerandthe(continuous)ratedpowercanbemorethandoubletimesinthedesignofvehicledrivemotors.7)LongLife,HighReliability,GoodEnvironmentalAdaptability,andLowCost.41)Inductionmotors(IMs),alsoknownasasynchronousmotors,arecharacterizedbytheirsimplestructure,convenientmanufacturing,robustness,lowcost,reliableoperation,lowtorqueripple,lownoise,noneedforpositionsensors,andhighspeedlimits.However,theirlimitationliesinaslipratecomparedtothesynchronousspeedoftheirrotatingmagneticfield,resultinginslightlypoorerspeedregulationperformance.Moreover,comparedtopermanentmagnetmotors,IMshavelowerefficiencyandpowerdensity.(2)Permanentmagnetsynchronousmotors(PMSMs)excelinpowerdensityandefficiency.Inaddition,theyexhibitprominentfeaturessuchasawidespeedrange,goodtorquecontrolperformance,simplestructure,andhighreliability,makingthemthepreferredtypeofmotorforautomotiveapplications.Forsomespecialapplications,suchasflatoraxialfluxstructuremotors,thetechnicaladvantagesofPMSMsareevenmorepronounced.Dependingontheinstallationpositionofthepermanentmagnetontherotor,theycanbeclassifiedintosurface-mounted(SPM)andinterior-mounted(IPM)types.Thelatterisfavoredinthedesignofvehicledrivemotorsduetothe"reluctancetorque"generatedbytherotor'ssaliencyeffect,whicheffectivelyimprovesthemotor'sefficiency.Forpermanentmagnetsynchronousmotorswithasquarewavebackelectromotiveforce,theyaresometimesclassifiedas"brushlessDCmotors."VehicledrivemotorsPermanentmagnetsynchronousmotors(PMSM)Inductionmotorssurface-mountedPMSMinterior-mountedPMSMFig.1-4CommonTypesofVehicleDriveMotors1.2CharacteristicsandCommonTypesofVehicleDriveMotors5DCBrushedMotorPMSMBasicComponentsandOperatingPrinciplesofthePermanentMagnetMotor61.3TypicalApplicationoftheVehicleDriveMotorTheISGmotor,alsoknownastheP1motor,itsinstalledposition,andstructuresareshowninFig.1-5.Themotorisdirectlyconnectedtotheengine,anditsrotorreplacesthetraditionalflywheel.Thisstructureminimallyaltersthetraditionalautomotivetransmissionsystem,offeringadvantagessuchasfewercomponents,lownoise,andrapidstart-up.Itiscurrentlythesimplestandmostmatureformofhybriddrive.TheinstallationoftheP2motorisattheinputendofthetransmission,asillustratedinFig.1-6.TheessentialdifferencefromtheISGconfigurationliesinanadditionalclutchbetweentheengineandthemotor,commonlyreferredtoastheK0clutch.Therefore,theP2motordriveconfigurationcanoperateinthreemodes:pureelectricdrive,internalcombustionenginedrive,andhybriddrive.SimilartotheISGconfigurationforhybridsystems,thereisnoneedtomodifythebasicstructureoftheoriginaltraditionalfuel-poweredvehicleengineandtransmission.Fig.1-5TheinstallationandstructureoftheISGmotorFig.1-6TheinstallationofP2motorstructure7Theintegrationofthemechanicalenergyoutputfromboththeinternalcombustionengineandtheelectricmotorinthetransmissioniscurrentlyacrucialtechnologicaldirectionforhybridelectricvehicles.Thisintegratedtransmission,alsoknownasaDedicatedHybridTransmission(DHT),operatesbyincorporatingoneormoreelectricmotorsintothetransmission,forminganautomatictransmissionsystemwithanelectricmotor.Thehybriddrivefunctionisachievedbysuperimposingtheinputpowerfromtheinternalcombustionengine.Toyota'sHybridSystem(THS)isatypicalexampleofaDHTtransmission.Thissystemutilizesthreepowersources,namely,theinternalcombustionengineanddualmotors(MG1,MG2).Throughaplanetarygearcoupling,itformsanelectronicallycontrolledcontinuouslyvariabletransmission.Thisconfigurationallowsforadual-degree-of-freedomadjustmentoftheenginespeedandtorquebasedondifferentvehicleconditions.WhendrivinginpureelectricmodewithmotorMG2,theenginechargesthebatterythroughmotorMG1.TheenginecanalsodrivethevehiclesimultaneouslywithelectricmotorMG2(orMG1).THSbelongstoapower-splithybridsystem,wheretorquedistributioniscontrolledbytheelectricmotorortheengine,enablingseamlessadjustmentofthetransmissionratio.Therefore,THSisalsoreferredtoasanelectronicallycontrolledcontinuouslyvariabletransmissionforelectricvehicles.Fig.1-7ThethirdgenerationoftheTHSsystemstructure1.3TheTypicalApplicationoftheVehicleDriveMotor8Thethree-in-oneelectricdrivesystem,integratingthemotor,controllerandreducer,isanimportantdirectioninthedevelopmentofautomotiveelectricdrivesystems.Theadvantagesofthisintegrateddesignareasfollows:Integrateddesignreducesthevolumeofthedrivesystem.Byconsolidatingthevariouscomponentsofthedrivesystemintoasingleunit,theoverallsystembecomesmorecompact,allowingforgreaterflexibilityinthelayoutofthevehicle'spowersystem.Integrateddesignreducestheweightofthedrivesystem.Withthehighdegreeofintegrationofmajorcomponents,theuseofconnectingwiresbetweencomponentsissignificantlyreduced,optimizingthesystem'sweightandresultinginlowerenergyconsumptionforthevehicle.Integrateddesigneffectivelyreducesthedistancebetweencomponents,optimizingenergytransmissionpaths,andfacilitatingthereductionoflosses.This,inturn,enhancestheoverallefficiencyofthepowertrain.Fig.1-8Three-in-oneelectricdrivesystem1.3TheTypicalApplicationoftheVehicleDriveMotor9Fig.1-9twodrivetypesofrimmotorandhubmotorCurrently,therearetwomaintypesofdrivesystemsforhubmotors:Thefirsttypeisknownasthe"rimmotor."Itstypicaltopologyisaninternalrotorandanexternalstator,asillustratedintheleftdiagraminFigure1-9.Theworkingprincipleinvolvesconnectingtherotor,servingastheoutputshaft,tothesungearofafixedreductionratioplanetarygearreducer.Thewheelhubisconnectedtotheringgear,amplifyingtheoutputtorqueofthehubmotorthroughasignificantreductionratio.Therefore,thismotorstructureisgenerallyahigh-speedinternalrotormotor.Thesecondtypeisthedirectdrivehubmotor,withatypicaltopologyofanexternalrotorandaninternalstator,asshownintherightdiagraminFigure1-9(b).Theworkingprincipleinvolvesdirectlyconnectingtheexternalrotortothewheelhubthroughafixeddevice.Whenthemotorisinoperation,thewheelrotatessynchronouslywiththemotor.Thus,thedirectdrivehubmotoristypicallyalow-speed,high-torqueexternalrotormotor.1.3TheTypicalApplicationoftheVehicleDriveMotor车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1

Introduction车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2

Magnetic

FieldandMagneticCircuit122.1TheGenerationandQuantificationofMagneticField2.1.1TheMagneticFieldanditsQuantification

132.1.1TheMagneticFieldanditsQuantification

Fig.2-2themagneticfluxthroughthecurvesurface142.1.2TheMagneticEffectofCurrentFig.2-3Themagneticfieldproducedbyanelementofcurrent(Biot-SavartLaw)

15

Fig.2-4Thearbitraryclosedlooppathforanelectriccurrent2.1.2TheMagneticEffectofCurrent

162.1.2TheMagneticEffectofCurrent

172.1.3Electromagneticforce(orLorentzforce)

Fig.2-6AparticleofchargeinamagneticfieldFig.2-7Aconductorinamagneticfield18

2.2ElectromagneticInduction19

Fig.2-9Motionalelectromotiveforce2.2ElectromagneticInduction20

2.2ElectromagneticInduction212.2Electromagneticinduction

222.3MagneticMedium

232.3MagneticMedium

Fig.2-2Ampère'scircuitallaw242.3MagneticMedium

Fig.2-14hysteresisloop

252.3MagneticMediumFig.2-5Hysteresisloopsofdifferentmagneticmediuma)softmagneticmaterialb)hardmagneticmaterialc)

ferritematerialofrectangularloop

262.3MagneticMedium

Fig.2-16Magneticenergyincables272.4MagneticCircuit,BasicLawsofMagneticCircuit2.4.1BasicLawsofMagneticCircuit

Fig.2-17Magneticcircuitofatransformer282.4.1BasicLawsofMagneticCircuitFig.2-18Non-branchedironcoremagneticcircuit

29

2.4.1BasicLawsofMagneticCircuit302.4.2ParallelandSeriesConnectionsofMagneticCircuits

31

2.4.2ParallelandSeriesConnectionsofMagneticCircuits322.4.2ParallelandSeriesConnectionsofMagneticCircuits

332.5TypicalDCMagneticCircuitFig.2-23Theironcoreofdoublecoilexcitationanditsequivalentcircuitdiagram

342.5.1Doublecoilexcitation,fluxlinkage2.5.1DoubleCoilExcitation,FluxLinkage

35

2.5.1DoubleCoilExcitation,FluxLinkage36

2.5.1DoubleCoilExcitation,FluxLinkage372.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-24PermanentMagnetMagneticCircuitwithanAirGap

382.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-25Demagnetizationcurveofpermanentmagnet

392.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-26Determinationofpermanentmagnetoperatingpoint

Duetothefactthatthedemagnetizationcurveofapermanentmagnetisnotnecessarilyastraightline,andadditionally,themagneticcircuitmayalsocontainnonlinearironcoresegments,thisbecomesanonlinearproblem.Therefore,itisconvenienttosolveitusinggraphicalmethods.402.5.2CalculationFeaturesofPermanentMagneticCircuit

车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2

Magnetic

FieldandMagneticCircuitChapter3

ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors433.1ElectromagneticSystem/LinearMotorModelwithMechanicalPortsFig.2-6Freechargeinamagneticfield

44Fig.3-1Theforcesituationofanenergizedconductorinthemagneticfield

3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts45Fig.3-2Motionsynthesisoftheelectricchargesintheenergizedconductorandforcesynthesisinthemagneticfield

3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts46Theelectromechanicalenergyconversionofoperationprocessforthemotorismuchmorecomplicatedthanthislinearmotor.However,theelectromechanicalenergyconversionprocesshasthefollowingbasiccharacteristics:1)Lorentzforceisthemicrophysicalbasisoftheelectromechanicalenergyconversion;2)Magneticfieldisanimportantmediatorintheelectromechanicalenergyconversion,butmagneticenergydoesnotnecessarilyincreaseordecrease;3)Theelectromechanicalenergyconversionmusthavetwoenergycouplingports:mechanicalportandelectricalport.Thereshouldbe“potentialquantities”actingontheports:themechanicalportisforceortorque,andtheelectricalportiselectricpotentialorelectricfield;4)Theinducedelectromotiveforceisanecessaryconditionforobtainingorreturningelectricalenergyfromelectricalports.Notethatinthiscase,itisassumedthatthemagneticfieldisconstantandtheinfluenceofthemagneticfieldaroundtheenergizedconductorisignored.Thiscasedoesnotreflecttheactualoperatingconditionsofthemotor.Inreality,thereisanarmaturereactionprocessinthemotor,wheretheairgapmagneticfieldisthecompositemagneticfieldofthearmaturefieldandtherotorfield.3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts473.2EnergyStorageintheElectromagneticSystem:MagneticEnergyandMagneticCoenergy

Fig.3-3Separatingthelossesmakesthesystema“magneticenergystoragesystemwithoutlosses”Port

MechanicallossLosslessMagneticEnergyStorageSystem483.2.2MagneticEnergyandMagneticCoenergyFig.3-4Ironcorewithdoublecoilexcitation

493.2.2MagneticEnergyandMagneticCoenergy

503.2.2MagneticEnergyandMagneticCoenergy

Fig.3-6Integrationpathofmagneticenergy513.2.2MagneticEnergyandMagneticCoenergy

523.3GenerationandUnifiedExpressionofElectromagneticTorque

Fig.3-7Electromechanicaldeviceswithstatorandrotorwindingsandairgaps533.3GenerationandUnifiedExpressionofElectromagneticTorque

543.3GenerationandUnifiedExpressionofElectromagneticTorque

553.3GenerationandUnifiedExpressionofElectromagneticTorque

Fig.3-8GenerationofreluctancetorqueFig.3-9Variationcurveofstatorwindingself-inductance563.3GenerationandUnifiedExpressionofElectromagneticTorqueFig.3-9Reluctancetorquevarieswithrotorposition

Fig.3-8Generationofreluctancetorque

57Faraday‘sLawofElectromagneticInduction(fromMagnetic

Electricity)Faraday'sLawofElectromagneticInduction:Thephenomenonofelectromagneticinductionreferstothegenerationofaninducedelectromotiveforce(EMF)duetothechangeofmagneticflux.ThedirectionoftheinducedemfinFaraday'sLawofElectromagneticInductioncanbedeterminedbyLenz'sLaw:Theinducedcurrent'smagneticfieldopposesthechangeintheoriginalmagneticflux.

Mechanicalsystem(singlemass)

ElectromagneticsystemNewton'sFirstandSecondLawsofMotion:Newton'sFirstLawofMotion,alsoknownastheLawofInertia.Itisstatedasfollows:Anobjectwillremaininmotionoratrest,unlessacteduponbyanexternalforce.Newton'sSecondLawofMotion:Theaccelerationofanobjectisdirectlyproportionaltothenetforceactingonit,isinthesamedirectionasthenetforce,andisinverselyproportionaltotheobject'smass.ForceisthecauseofchangesinmotionVoltageandthechangeoffluxlinkagearemutuallycausal58ThePrincipleofElectromechanicalEnergyConversionofMotorsMaxwellappliedtheLagrangianmethodtodescribethedynamicsofelectromechanicalcoupledsystems.Hederivedthesystem'sequationsofmotionfromthefundamentallawsofmechanicsandelectromagnetics,resultinginthe“Lagrangian-Maxwellequations”.

Lagrangian-Maxwellequations:Mechanicalsystem(singlemass)Electromagneticsystem59

Fig.3-12electromagnet3.4TheDefinationofSpaceVector60

3.4TheDefinationofSpaceVector61Fig.4-11a)Themagneticfieldgeneratedbythefullpitchcoil

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings62Fig4-11b)Thewavefunctionofmagnetomotiveforceforfullpitchcoil

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings63

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings64

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings65Fig.4-16Three-phasefundamentalwavesatdifferenttimesFig.4-17rotatingmagnetomotiveforcewave

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings66Fig.4-18Thespacecomplexplanecorrespondingtotheaxialcross-sectionofthemotor

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings67TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings

68Fig.4-21Thecurrentvectorsofstatorandrotorareequivalenttothe"axiscoil“currentvectors

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings69Fig.4-20Thestatormagnetomotiveforcevectoranditsmovingtrajectory

Fig.4-22Thecosine-distributedmagneticfieldgeneratedbytheA-phasewindinga)Cosine-distributedMMFwaveb)Expandingofcosine-distributedmagneticfieldTheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWinding703.5VectorExpressionofElectromagneticTorqueFig.4-27Synthesisofstatorandrotormagnetomotiveforcespacevector

71Fig.4-27Synthesisofstatorandrotormagnetomotiveforcespacevector

3.5VectorExpressionofElectromagneticTorque72ElectromagneticLoadofMotors

73ElectromagneticLoadGiventhevolumeofthemotor,theelectromagneticloaddeterminesthemotor'soutputtorquecapability.Inotherwords,foradesiredoutputtorque,thelargertheelectromagneticload,thesmallerthemotorvolume.Increasingtorqueoutputcapabilitymainlydependsonthemagneticloadandelectricalload.Increasingtheelectromagneticloadisbeneficialforachievingtheminiaturizationandlightweightofthemotor.Theselectionofelectromagneticloadmainlyconsidersfactorsincluding:MotorcoolingconditionsGradeofmaterialsusedinthemotorandinsulationstructurePowerandspeedofthemotorTherearemanyfactorstoconsiderwhenselectingelectromagneticload,makingitdifficulttodeterminesolelyfromtheory.Typically,referenceismadetolong-termaccumulatedempiricaldatainthemotorindustry,andselectionismadeafteranalyzingandcomparingthesimilaritiesanddifferencesinmaterials,structures,andtechnicalrequirementsbetweenthedesignedmotorandexistingmotorsinuse.74ElectromagneticLoad

Chapter3

ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter4

EntrainmentElectromotiveForceandPrototypeMotorModel车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors77

4.1RotatingReferenceFrameandEntrainmentElectromotiveForce78

RotatingReferenceFrameandRotationalTransformationofSpaceVector79RotatingReferenceFrameandRotationalTransformationofSpaceVectorFig.4-24StaticαβcoordinatesystemandarbitrarysynchronousrotatingDQcoordinatesystem

80

EntrainmentMotionandtheInducedMotionalElectromotiveForce81

EntrainmentaccelerationEntrainmentMotionandtheInducedMotionalElectromotiveForce82Faraday’sReferenceFrameandEntrainmentElectromotiveForceAnalysisofmotioninthenon-inertialreferenceframeInmechanicalsystem:(Non-inertial)referenceframeandinertialforce.83Faraday’sReferenceFrameandEntrainmentElectromotiveForce[1]钟再敏,王业勤.电机模型中牵连运动及其动生电动势的数理表达[J].电机与控制应用,2023,50(1):30-34.

84

Faraday’sReferenceFrameandEntrainmentElectromotiveForce85TheApplicationsofFaradayreferenceframes

864.2Four-coilPrototypeMotorModel

87

Four-coilPrototypeMotorModel88Four-coilPrototypeMotorModel

89

Four-coilPrototypeMotorModel90

AnyarbitraryMTrotatingcoordinatesystemFour-coilPrototypeMotorModel91

Four-coilPrototypeMotorModelAnyarbitraryMTrotatingcoordinatesystem92Closed-loopControlCharacteristicsofPrototypeMotorModel

93Closed-loopControlCharacteristicsofPrototypeMotorModel

94

Closed-loopControlCharacteristicsofPrototypeMotorModel

95Closed-loopControlCharacteristicsofPrototypeMotorModel96

Closed-loopControlCharacteristicsofPrototypeMotorModel97

Closed-loopControlCharacteristicsofPrototypeMotorModel98TheSpaceVectorDiagramofthePrototypeMotorModelwithNon-salientPole

99

TheSpaceVectorDiagramofthePrototypeMotorModelwithSalientPole1004.3Input-OutputCharacteristicsoftheFour-coilPrototypeMotorModelClosed-loopControlCharacteristicsofPrototypeMotorModel

101PowerBalanceRelationshipofthePrototypeMotorModelThefigureaboveshowstherealpowerflowofthefour-coilmotormodel.Wedefinethepositivedirectionofpowerflowasfollows:Thedirectionofpowerflowisconsideredpositivewhenelectricalenergyfromthestator-sidepowersupplyistransferredtotheair-gapmagneticfield.Thedirectionofpowerflowisalsoconsideredpositivewhenelectricalenergyfromtherotor-sidepowersupplyistransferredtotheair-gapmagneticfield,resultinginthegenerationofelectromagnetictorqueandtheoutputofmechanicalpowerfromtherotor.

102RealPower

103ReactivePower

1044.4AnalyzingtheDCMotorandTransformerbasedonthePrototypeMotorModelMultiphaseTransformerDCMotorSynchronousReluctanceMotorInductionMotorPermanentMagnetSynchronousMotorDoublyFedInductionGenerator105ImplementationofPrototypeMotorModel:DCMotor

Four-CoilPrototypeMotorModelofDCMotor106

ImplementationofPrototypeMotorModel:DCMotorFour-CoilPrototypeMotorModelofDCMotor107

ImplementationofPrototypeMotorModel:Two-phaseOrthogonalTransformerFour-CoilPrototypeMotorModelofTwo-phaseOrthogonalTransformerChapter4

EntrainmentElectromotiveForceandPrototypeMotorModel车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter5

Three-phaseACWindingandItsMagneticField车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors1105.1BasicsofThree-phaseACCircuits

1115.2TypicalACWindingStructure5.2.1ClassificationandMainDesignParametersofACWindingTypically,conductorsmadeofsurface-insulatedcopperarefirstwoundintomulti-turncoils,alsoknownascoilelements.Thesecoilsarethenplacedinsuitableslotsonthestator.Acoilconsistsofmultipleturnsofconductor,andtheportionembeddedinthecoreslotsiscalledtheeffectivesegment,whiletheportionsonbothsidesofthecorearecalledtheendportions.Thenumberofslotsspannedbyacoilelementiscalledthecoilpitch,denotedby𝑦.Basedonsinglecoilelement,coilsfromthesamephaseunderthesamemagneticpolearefirstconnected(inseries),andthencoilsfromthesamephasebutunderdifferentmagneticpolesareconnected(eitherinseriesorinparallel)toformaphasewinding.Intermsofthenumberofphases,ACwindingscanbedividedintosingle-phaseandmulti-phasewindings.

Generally,𝑚isusedtorepresentthenumberofphasesofthemotorstatorwinding.Accordingtothenumberofslotsperpoleperphase,itcanbedividedintointegerslotandfractionalslotwindings.Accordingtothenumberoflayersintheslot,itisdividedintosingle-layeranddouble-layerwindings.Accordingtothepitchofthecoil,itcanbedividedintoconcentratedwindinganddistributedwinding.Windingscanalsobeclassifiedintolapwindingandwavewindingbasedontheirwindingmethods.1125.2.1ClassificationandMainDesignParametersofACWindingNameSymbolFormulaexpressionDefinitionPhasenumber

Thenumberofphasesofthestatoroutputterminals.Numberofpolepairs

Motormagneticfieldpolepairsnumberofslots

TotalnumberofstatorslotsCoilpitch

ThenumberofslotsspannedbythecoilelementNumberofparallelpathsThenumberofparallelbranchesperphasewindingPoledistanceNumberofstatorslotsper(rotor)magneticpoleNumberofslotsperpoleperphaseSlotareaoccupiedbyeachphaseundereachpoleSlotpitchangleSpatialelectricalangledifferencebetweentwoadj

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论