




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1
Introduction21.1TheBriefHistoryofElectricMotors1)“AccumulationofMotorTechnologyStage”:Theoriginofmotortechnologycanbetracedbackto1831whenFaradayinventedthedisc-typemotor.Theperiodtilltothesuccessfulinventionofthehigh-powerdirectcurrentgeneratorsin1866canbecalled“accumulationofmotortechnologystage”.2)“IndustrialApplicationofDCMotors”:In1866,theGermanengineerSiemenssuccessfullydevelopedself-excitedandcompound-woundhigh-powerDCgenerators,markingthebeginningoftheconversionofhigh-powermechanicalenergyintoelectricalenergy,andsparkingthelate19th-century“electrification”revolution.Thedevelopmentofmotortechnologyalsoentereditsfirstgoldendevelopmentperiod:“thematurestageofthemotortechnology.3)“InventionofACMotors”:Inthefirsthalfofthe19thcentury,variousACmotorswerecontinuouslyinventedanddeveloped,usheringinthefirstgoldenageofextensiveindustrialapplicationsofmotors.
4)“PowerElectronicsEnabledSpeedControlofACMotors”:ThedevelopmentofpowersemiconductortechnologygreatlypromotestheadvancementofthespeedcontroltechnologyofACmotors.Fig.1-1PhysicalModelandCircuitDiagramofFaraday'sDiscGeneratorin1831Fig.1-2DiagramoftheMotorInventedbySteckinFig.1-3DiagramoftheMotorInventedbyPixie31.2CharacteristicsandCommonTypesofVehicleDriveMotorsDuetothespecificapplicationrequirementsinelectricvehicles,vehicledrivemotorshavedistinctivetechnicalcharacteristics:1)HighPower-to-WeightRatio:Lightweightisdirectlycontributedtovehicle'sefficiency,sounlikeindustrialmotorsforfixedapplicationequipment,vehicledrivemotorsgenerallyrequirethehighestpossiblepower-to-weightratio.2)HighPower-to-VolumeRatio:Optimizingtheavailablespaceinvehiclesisacontinuouslychallenge.Amorecompactmotorsystemmakesiteasiertomeetthevehicle'sneedsandallowsfordeeperintegrationforthesystemdesign.Therefore,thepower-to-volumeratioofthemotorshouldbeashighaspossible.3)HighEfficiency:Pursuinghighefficiencyisafundamentalrequirementforallmotorapplications.Oneofthekeycharacteristicsofvehicledrivemotorsisthattheyshouldhaveabroadhigh-efficiencyrange.It'snotjustabouthavinghighefficiencyatspecificoperatingpointsbuthavinghighefficiencyacrossawiderangeofspeedsandtorquestomeethighefficiencyrequirementsundervariousdrivingconditions.4)WideSpeedRange:Exceptforafewmodelsthatusegearboxeswithmultiplespeedratios,mostelectricvehicleshaveasinglefixed-ratioreducer.Tomeettheneedsofbothhigh-speeddrivingandlow-speedclimbing,vehicledrivemotorsmusthaveaverywidespeedrange.5)FastTorqueDynamicResponse:Vehicledrivemotorsoperatecontinuouslyundervaryingconditions.Afasttorquedynamicresponseisessentialforthedrivingexperienceofthedriverandacorekeyindicatorrelatedtothevehicle'ssafetyfunctions.6)HighShort-TimePeakPower:Thecontinuouspowerrequiredforsteady-statedrivingissignificantlylowerthantheshort-termpeakpowerneededforaccelerationconditions.However,accelerationconditionshavearelativelyshortduration.Therefore,thedifferencebetweenthe(short-term)peakpowerandthe(continuous)ratedpowercanbemorethandoubletimesinthedesignofvehicledrivemotors.7)LongLife,HighReliability,GoodEnvironmentalAdaptability,andLowCost.41)Inductionmotors(IMs),alsoknownasasynchronousmotors,arecharacterizedbytheirsimplestructure,convenientmanufacturing,robustness,lowcost,reliableoperation,lowtorqueripple,lownoise,noneedforpositionsensors,andhighspeedlimits.However,theirlimitationliesinaslipratecomparedtothesynchronousspeedoftheirrotatingmagneticfield,resultinginslightlypoorerspeedregulationperformance.Moreover,comparedtopermanentmagnetmotors,IMshavelowerefficiencyandpowerdensity.(2)Permanentmagnetsynchronousmotors(PMSMs)excelinpowerdensityandefficiency.Inaddition,theyexhibitprominentfeaturessuchasawidespeedrange,goodtorquecontrolperformance,simplestructure,andhighreliability,makingthemthepreferredtypeofmotorforautomotiveapplications.Forsomespecialapplications,suchasflatoraxialfluxstructuremotors,thetechnicaladvantagesofPMSMsareevenmorepronounced.Dependingontheinstallationpositionofthepermanentmagnetontherotor,theycanbeclassifiedintosurface-mounted(SPM)andinterior-mounted(IPM)types.Thelatterisfavoredinthedesignofvehicledrivemotorsduetothe"reluctancetorque"generatedbytherotor'ssaliencyeffect,whicheffectivelyimprovesthemotor'sefficiency.Forpermanentmagnetsynchronousmotorswithasquarewavebackelectromotiveforce,theyaresometimesclassifiedas"brushlessDCmotors."VehicledrivemotorsPermanentmagnetsynchronousmotors(PMSM)Inductionmotorssurface-mountedPMSMinterior-mountedPMSMFig.1-4CommonTypesofVehicleDriveMotors1.2CharacteristicsandCommonTypesofVehicleDriveMotors5DCBrushedMotorPMSMBasicComponentsandOperatingPrinciplesofthePermanentMagnetMotor61.3TypicalApplicationoftheVehicleDriveMotorTheISGmotor,alsoknownastheP1motor,itsinstalledposition,andstructuresareshowninFig.1-5.Themotorisdirectlyconnectedtotheengine,anditsrotorreplacesthetraditionalflywheel.Thisstructureminimallyaltersthetraditionalautomotivetransmissionsystem,offeringadvantagessuchasfewercomponents,lownoise,andrapidstart-up.Itiscurrentlythesimplestandmostmatureformofhybriddrive.TheinstallationoftheP2motorisattheinputendofthetransmission,asillustratedinFig.1-6.TheessentialdifferencefromtheISGconfigurationliesinanadditionalclutchbetweentheengineandthemotor,commonlyreferredtoastheK0clutch.Therefore,theP2motordriveconfigurationcanoperateinthreemodes:pureelectricdrive,internalcombustionenginedrive,andhybriddrive.SimilartotheISGconfigurationforhybridsystems,thereisnoneedtomodifythebasicstructureoftheoriginaltraditionalfuel-poweredvehicleengineandtransmission.Fig.1-5TheinstallationandstructureoftheISGmotorFig.1-6TheinstallationofP2motorstructure7Theintegrationofthemechanicalenergyoutputfromboththeinternalcombustionengineandtheelectricmotorinthetransmissioniscurrentlyacrucialtechnologicaldirectionforhybridelectricvehicles.Thisintegratedtransmission,alsoknownasaDedicatedHybridTransmission(DHT),operatesbyincorporatingoneormoreelectricmotorsintothetransmission,forminganautomatictransmissionsystemwithanelectricmotor.Thehybriddrivefunctionisachievedbysuperimposingtheinputpowerfromtheinternalcombustionengine.Toyota'sHybridSystem(THS)isatypicalexampleofaDHTtransmission.Thissystemutilizesthreepowersources,namely,theinternalcombustionengineanddualmotors(MG1,MG2).Throughaplanetarygearcoupling,itformsanelectronicallycontrolledcontinuouslyvariabletransmission.Thisconfigurationallowsforadual-degree-of-freedomadjustmentoftheenginespeedandtorquebasedondifferentvehicleconditions.WhendrivinginpureelectricmodewithmotorMG2,theenginechargesthebatterythroughmotorMG1.TheenginecanalsodrivethevehiclesimultaneouslywithelectricmotorMG2(orMG1).THSbelongstoapower-splithybridsystem,wheretorquedistributioniscontrolledbytheelectricmotorortheengine,enablingseamlessadjustmentofthetransmissionratio.Therefore,THSisalsoreferredtoasanelectronicallycontrolledcontinuouslyvariabletransmissionforelectricvehicles.Fig.1-7ThethirdgenerationoftheTHSsystemstructure1.3TheTypicalApplicationoftheVehicleDriveMotor8Thethree-in-oneelectricdrivesystem,integratingthemotor,controllerandreducer,isanimportantdirectioninthedevelopmentofautomotiveelectricdrivesystems.Theadvantagesofthisintegrateddesignareasfollows:Integrateddesignreducesthevolumeofthedrivesystem.Byconsolidatingthevariouscomponentsofthedrivesystemintoasingleunit,theoverallsystembecomesmorecompact,allowingforgreaterflexibilityinthelayoutofthevehicle'spowersystem.Integrateddesignreducestheweightofthedrivesystem.Withthehighdegreeofintegrationofmajorcomponents,theuseofconnectingwiresbetweencomponentsissignificantlyreduced,optimizingthesystem'sweightandresultinginlowerenergyconsumptionforthevehicle.Integrateddesigneffectivelyreducesthedistancebetweencomponents,optimizingenergytransmissionpaths,andfacilitatingthereductionoflosses.This,inturn,enhancestheoverallefficiencyofthepowertrain.Fig.1-8Three-in-oneelectricdrivesystem1.3TheTypicalApplicationoftheVehicleDriveMotor9Fig.1-9twodrivetypesofrimmotorandhubmotorCurrently,therearetwomaintypesofdrivesystemsforhubmotors:Thefirsttypeisknownasthe"rimmotor."Itstypicaltopologyisaninternalrotorandanexternalstator,asillustratedintheleftdiagraminFigure1-9.Theworkingprincipleinvolvesconnectingtherotor,servingastheoutputshaft,tothesungearofafixedreductionratioplanetarygearreducer.Thewheelhubisconnectedtotheringgear,amplifyingtheoutputtorqueofthehubmotorthroughasignificantreductionratio.Therefore,thismotorstructureisgenerallyahigh-speedinternalrotormotor.Thesecondtypeisthedirectdrivehubmotor,withatypicaltopologyofanexternalrotorandaninternalstator,asshownintherightdiagraminFigure1-9(b).Theworkingprincipleinvolvesdirectlyconnectingtheexternalrotortothewheelhubthroughafixeddevice.Whenthemotorisinoperation,thewheelrotatessynchronouslywiththemotor.Thus,thedirectdrivehubmotoristypicallyalow-speed,high-torqueexternalrotormotor.1.3TheTypicalApplicationoftheVehicleDriveMotor车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1
Introduction车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2
Magnetic
FieldandMagneticCircuit122.1TheGenerationandQuantificationofMagneticField2.1.1TheMagneticFieldanditsQuantification
132.1.1TheMagneticFieldanditsQuantification
Fig.2-2themagneticfluxthroughthecurvesurface142.1.2TheMagneticEffectofCurrentFig.2-3Themagneticfieldproducedbyanelementofcurrent(Biot-SavartLaw)
15
Fig.2-4Thearbitraryclosedlooppathforanelectriccurrent2.1.2TheMagneticEffectofCurrent
162.1.2TheMagneticEffectofCurrent
172.1.3Electromagneticforce(orLorentzforce)
Fig.2-6AparticleofchargeinamagneticfieldFig.2-7Aconductorinamagneticfield18
2.2ElectromagneticInduction19
Fig.2-9Motionalelectromotiveforce2.2ElectromagneticInduction20
2.2ElectromagneticInduction212.2Electromagneticinduction
222.3MagneticMedium
232.3MagneticMedium
Fig.2-2Ampère'scircuitallaw242.3MagneticMedium
Fig.2-14hysteresisloop
252.3MagneticMediumFig.2-5Hysteresisloopsofdifferentmagneticmediuma)softmagneticmaterialb)hardmagneticmaterialc)
ferritematerialofrectangularloop
262.3MagneticMedium
Fig.2-16Magneticenergyincables272.4MagneticCircuit,BasicLawsofMagneticCircuit2.4.1BasicLawsofMagneticCircuit
Fig.2-17Magneticcircuitofatransformer282.4.1BasicLawsofMagneticCircuitFig.2-18Non-branchedironcoremagneticcircuit
29
2.4.1BasicLawsofMagneticCircuit302.4.2ParallelandSeriesConnectionsofMagneticCircuits
31
2.4.2ParallelandSeriesConnectionsofMagneticCircuits322.4.2ParallelandSeriesConnectionsofMagneticCircuits
332.5TypicalDCMagneticCircuitFig.2-23Theironcoreofdoublecoilexcitationanditsequivalentcircuitdiagram
342.5.1Doublecoilexcitation,fluxlinkage2.5.1DoubleCoilExcitation,FluxLinkage
35
2.5.1DoubleCoilExcitation,FluxLinkage36
2.5.1DoubleCoilExcitation,FluxLinkage372.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-24PermanentMagnetMagneticCircuitwithanAirGap
382.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-25Demagnetizationcurveofpermanentmagnet
392.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-26Determinationofpermanentmagnetoperatingpoint
Duetothefactthatthedemagnetizationcurveofapermanentmagnetisnotnecessarilyastraightline,andadditionally,themagneticcircuitmayalsocontainnonlinearironcoresegments,thisbecomesanonlinearproblem.Therefore,itisconvenienttosolveitusinggraphicalmethods.402.5.2CalculationFeaturesofPermanentMagneticCircuit
车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2
Magnetic
FieldandMagneticCircuitChapter3
ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors433.1ElectromagneticSystem/LinearMotorModelwithMechanicalPortsFig.2-6Freechargeinamagneticfield
44Fig.3-1Theforcesituationofanenergizedconductorinthemagneticfield
3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts45Fig.3-2Motionsynthesisoftheelectricchargesintheenergizedconductorandforcesynthesisinthemagneticfield
3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts46Theelectromechanicalenergyconversionofoperationprocessforthemotorismuchmorecomplicatedthanthislinearmotor.However,theelectromechanicalenergyconversionprocesshasthefollowingbasiccharacteristics:1)Lorentzforceisthemicrophysicalbasisoftheelectromechanicalenergyconversion;2)Magneticfieldisanimportantmediatorintheelectromechanicalenergyconversion,butmagneticenergydoesnotnecessarilyincreaseordecrease;3)Theelectromechanicalenergyconversionmusthavetwoenergycouplingports:mechanicalportandelectricalport.Thereshouldbe“potentialquantities”actingontheports:themechanicalportisforceortorque,andtheelectricalportiselectricpotentialorelectricfield;4)Theinducedelectromotiveforceisanecessaryconditionforobtainingorreturningelectricalenergyfromelectricalports.Notethatinthiscase,itisassumedthatthemagneticfieldisconstantandtheinfluenceofthemagneticfieldaroundtheenergizedconductorisignored.Thiscasedoesnotreflecttheactualoperatingconditionsofthemotor.Inreality,thereisanarmaturereactionprocessinthemotor,wheretheairgapmagneticfieldisthecompositemagneticfieldofthearmaturefieldandtherotorfield.3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts473.2EnergyStorageintheElectromagneticSystem:MagneticEnergyandMagneticCoenergy
Fig.3-3Separatingthelossesmakesthesystema“magneticenergystoragesystemwithoutlosses”Port
MechanicallossLosslessMagneticEnergyStorageSystem483.2.2MagneticEnergyandMagneticCoenergyFig.3-4Ironcorewithdoublecoilexcitation
493.2.2MagneticEnergyandMagneticCoenergy
503.2.2MagneticEnergyandMagneticCoenergy
Fig.3-6Integrationpathofmagneticenergy513.2.2MagneticEnergyandMagneticCoenergy
523.3GenerationandUnifiedExpressionofElectromagneticTorque
Fig.3-7Electromechanicaldeviceswithstatorandrotorwindingsandairgaps533.3GenerationandUnifiedExpressionofElectromagneticTorque
543.3GenerationandUnifiedExpressionofElectromagneticTorque
553.3GenerationandUnifiedExpressionofElectromagneticTorque
Fig.3-8GenerationofreluctancetorqueFig.3-9Variationcurveofstatorwindingself-inductance563.3GenerationandUnifiedExpressionofElectromagneticTorqueFig.3-9Reluctancetorquevarieswithrotorposition
Fig.3-8Generationofreluctancetorque
57Faraday‘sLawofElectromagneticInduction(fromMagnetic
→
Electricity)Faraday'sLawofElectromagneticInduction:Thephenomenonofelectromagneticinductionreferstothegenerationofaninducedelectromotiveforce(EMF)duetothechangeofmagneticflux.ThedirectionoftheinducedemfinFaraday'sLawofElectromagneticInductioncanbedeterminedbyLenz'sLaw:Theinducedcurrent'smagneticfieldopposesthechangeintheoriginalmagneticflux.
Mechanicalsystem(singlemass)
ElectromagneticsystemNewton'sFirstandSecondLawsofMotion:Newton'sFirstLawofMotion,alsoknownastheLawofInertia.Itisstatedasfollows:Anobjectwillremaininmotionoratrest,unlessacteduponbyanexternalforce.Newton'sSecondLawofMotion:Theaccelerationofanobjectisdirectlyproportionaltothenetforceactingonit,isinthesamedirectionasthenetforce,andisinverselyproportionaltotheobject'smass.ForceisthecauseofchangesinmotionVoltageandthechangeoffluxlinkagearemutuallycausal58ThePrincipleofElectromechanicalEnergyConversionofMotorsMaxwellappliedtheLagrangianmethodtodescribethedynamicsofelectromechanicalcoupledsystems.Hederivedthesystem'sequationsofmotionfromthefundamentallawsofmechanicsandelectromagnetics,resultinginthe“Lagrangian-Maxwellequations”.
Lagrangian-Maxwellequations:Mechanicalsystem(singlemass)Electromagneticsystem59
Fig.3-12electromagnet3.4TheDefinationofSpaceVector60
3.4TheDefinationofSpaceVector61Fig.4-11a)Themagneticfieldgeneratedbythefullpitchcoil
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings62Fig4-11b)Thewavefunctionofmagnetomotiveforceforfullpitchcoil
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings63
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings64
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings65Fig.4-16Three-phasefundamentalwavesatdifferenttimesFig.4-17rotatingmagnetomotiveforcewave
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings66Fig.4-18Thespacecomplexplanecorrespondingtotheaxialcross-sectionofthemotor
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings67TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings
68Fig.4-21Thecurrentvectorsofstatorandrotorareequivalenttothe"axiscoil“currentvectors
TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings69Fig.4-20Thestatormagnetomotiveforcevectoranditsmovingtrajectory
Fig.4-22Thecosine-distributedmagneticfieldgeneratedbytheA-phasewindinga)Cosine-distributedMMFwaveb)Expandingofcosine-distributedmagneticfieldTheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWinding703.5VectorExpressionofElectromagneticTorqueFig.4-27Synthesisofstatorandrotormagnetomotiveforcespacevector
71Fig.4-27Synthesisofstatorandrotormagnetomotiveforcespacevector
3.5VectorExpressionofElectromagneticTorque72ElectromagneticLoadofMotors
73ElectromagneticLoadGiventhevolumeofthemotor,theelectromagneticloaddeterminesthemotor'soutputtorquecapability.Inotherwords,foradesiredoutputtorque,thelargertheelectromagneticload,thesmallerthemotorvolume.Increasingtorqueoutputcapabilitymainlydependsonthemagneticloadandelectricalload.Increasingtheelectromagneticloadisbeneficialforachievingtheminiaturizationandlightweightofthemotor.Theselectionofelectromagneticloadmainlyconsidersfactorsincluding:MotorcoolingconditionsGradeofmaterialsusedinthemotorandinsulationstructurePowerandspeedofthemotorTherearemanyfactorstoconsiderwhenselectingelectromagneticload,makingitdifficulttodeterminesolelyfromtheory.Typically,referenceismadetolong-termaccumulatedempiricaldatainthemotorindustry,andselectionismadeafteranalyzingandcomparingthesimilaritiesanddifferencesinmaterials,structures,andtechnicalrequirementsbetweenthedesignedmotorandexistingmotorsinuse.74ElectromagneticLoad
Chapter3
ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter4
EntrainmentElectromotiveForceandPrototypeMotorModel车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors77
4.1RotatingReferenceFrameandEntrainmentElectromotiveForce78
RotatingReferenceFrameandRotationalTransformationofSpaceVector79RotatingReferenceFrameandRotationalTransformationofSpaceVectorFig.4-24StaticαβcoordinatesystemandarbitrarysynchronousrotatingDQcoordinatesystem
80
EntrainmentMotionandtheInducedMotionalElectromotiveForce81
EntrainmentaccelerationEntrainmentMotionandtheInducedMotionalElectromotiveForce82Faraday’sReferenceFrameandEntrainmentElectromotiveForceAnalysisofmotioninthenon-inertialreferenceframeInmechanicalsystem:(Non-inertial)referenceframeandinertialforce.83Faraday’sReferenceFrameandEntrainmentElectromotiveForce[1]钟再敏,王业勤.电机模型中牵连运动及其动生电动势的数理表达[J].电机与控制应用,2023,50(1):30-34.
84
Faraday’sReferenceFrameandEntrainmentElectromotiveForce85TheApplicationsofFaradayreferenceframes
864.2Four-coilPrototypeMotorModel
87
Four-coilPrototypeMotorModel88Four-coilPrototypeMotorModel
89
Four-coilPrototypeMotorModel90
AnyarbitraryMTrotatingcoordinatesystemFour-coilPrototypeMotorModel91
Four-coilPrototypeMotorModelAnyarbitraryMTrotatingcoordinatesystem92Closed-loopControlCharacteristicsofPrototypeMotorModel
93Closed-loopControlCharacteristicsofPrototypeMotorModel
94
Closed-loopControlCharacteristicsofPrototypeMotorModel
95Closed-loopControlCharacteristicsofPrototypeMotorModel96
Closed-loopControlCharacteristicsofPrototypeMotorModel97
Closed-loopControlCharacteristicsofPrototypeMotorModel98TheSpaceVectorDiagramofthePrototypeMotorModelwithNon-salientPole
99
TheSpaceVectorDiagramofthePrototypeMotorModelwithSalientPole1004.3Input-OutputCharacteristicsoftheFour-coilPrototypeMotorModelClosed-loopControlCharacteristicsofPrototypeMotorModel
101PowerBalanceRelationshipofthePrototypeMotorModelThefigureaboveshowstherealpowerflowofthefour-coilmotormodel.Wedefinethepositivedirectionofpowerflowasfollows:Thedirectionofpowerflowisconsideredpositivewhenelectricalenergyfromthestator-sidepowersupplyistransferredtotheair-gapmagneticfield.Thedirectionofpowerflowisalsoconsideredpositivewhenelectricalenergyfromtherotor-sidepowersupplyistransferredtotheair-gapmagneticfield,resultinginthegenerationofelectromagnetictorqueandtheoutputofmechanicalpowerfromtherotor.
102RealPower
103ReactivePower
1044.4AnalyzingtheDCMotorandTransformerbasedonthePrototypeMotorModelMultiphaseTransformerDCMotorSynchronousReluctanceMotorInductionMotorPermanentMagnetSynchronousMotorDoublyFedInductionGenerator105ImplementationofPrototypeMotorModel:DCMotor
Four-CoilPrototypeMotorModelofDCMotor106
ImplementationofPrototypeMotorModel:DCMotorFour-CoilPrototypeMotorModelofDCMotor107
ImplementationofPrototypeMotorModel:Two-phaseOrthogonalTransformerFour-CoilPrototypeMotorModelofTwo-phaseOrthogonalTransformerChapter4
EntrainmentElectromotiveForceandPrototypeMotorModel车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter5
Three-phaseACWindingandItsMagneticField车用驱动电机原理与控制基础(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors1105.1BasicsofThree-phaseACCircuits
1115.2TypicalACWindingStructure5.2.1ClassificationandMainDesignParametersofACWindingTypically,conductorsmadeofsurface-insulatedcopperarefirstwoundintomulti-turncoils,alsoknownascoilelements.Thesecoilsarethenplacedinsuitableslotsonthestator.Acoilconsistsofmultipleturnsofconductor,andtheportionembeddedinthecoreslotsiscalledtheeffectivesegment,whiletheportionsonbothsidesofthecorearecalledtheendportions.Thenumberofslotsspannedbyacoilelementiscalledthecoilpitch,denotedby𝑦.Basedonsinglecoilelement,coilsfromthesamephaseunderthesamemagneticpolearefirstconnected(inseries),andthencoilsfromthesamephasebutunderdifferentmagneticpolesareconnected(eitherinseriesorinparallel)toformaphasewinding.Intermsofthenumberofphases,ACwindingscanbedividedintosingle-phaseandmulti-phasewindings.
Generally,𝑚isusedtorepresentthenumberofphasesofthemotorstatorwinding.Accordingtothenumberofslotsperpoleperphase,itcanbedividedintointegerslotandfractionalslotwindings.Accordingtothenumberoflayersintheslot,itisdividedintosingle-layeranddouble-layerwindings.Accordingtothepitchofthecoil,itcanbedividedintoconcentratedwindinganddistributedwinding.Windingscanalsobeclassifiedintolapwindingandwavewindingbasedontheirwindingmethods.1125.2.1ClassificationandMainDesignParametersofACWindingNameSymbolFormulaexpressionDefinitionPhasenumber
Thenumberofphasesofthestatoroutputterminals.Numberofpolepairs
Motormagneticfieldpolepairsnumberofslots
TotalnumberofstatorslotsCoilpitch
ThenumberofslotsspannedbythecoilelementNumberofparallelpathsThenumberofparallelbranchesperphasewindingPoledistanceNumberofstatorslotsper(rotor)magneticpoleNumberofslotsperpoleperphaseSlotareaoccupiedbyeachphaseundereachpoleSlotpitchangleSpatialelectricalangledifferencebetweentwoadj
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省唐山市丰南区达标名校2024-2025学年初三下学期九月月考生物试题含解析
- 宁波城市职业技术学院《概率论与数理统计(三)》2023-2024学年第二学期期末试卷
- 南京师范大学中北学院《嵌入式系统与开发》2023-2024学年第二学期期末试卷
- 四川邮电职业技术学院《舞蹈概论》2023-2024学年第二学期期末试卷
- 盐城工业职业技术学院《计算机网络教育应用》2023-2024学年第二学期期末试卷
- 浙江省杭州下城区重点达标名校2024-2025学年初三下学期第三次质检(期中)化学试题含解析
- 湖北省黄冈市黄梅县2025年数学三下期末预测试题含解析
- 江西师范大学科学技术学院《运动技能(三)羽毛球》2023-2024学年第二学期期末试卷
- 浙江省绍兴实验学校2025年初三下期末联考物理试题含解析
- 柳州职业技术学院《绿色体育学》2023-2024学年第二学期期末试卷
- (一模)桂林市、来宾市2025届高考第一次跨市联合模拟考试生物试卷(含答案详解)
- 四川省宜宾市第三中学2024-2025学年高二下学期3月月考语文试题(含答案)
- 北京市消防条例解读
- 农业合作社管理与运营模式试题及答案
- 2025年版中等职业教育专业教学标准 710205 大数据技术应用
- 项目燃油供给系统检修广东交通汽车技术系课件
- 2024年公务员考试中财务知识的考察试题及答案
- 治理盐碱可行性报告
- 任务三家庭清扫有工序(教学课件)二年级下册劳动技术(人美版)
- 医院检验科实验室生物安全程序文件SOP
- JTG D70-2-2014 公路隧道设计规范 第二册 交通工程与附属设施
评论
0/150
提交评论