2025届济宁市高一数学第一学期期末联考试题含解析_第1页
2025届济宁市高一数学第一学期期末联考试题含解析_第2页
2025届济宁市高一数学第一学期期末联考试题含解析_第3页
2025届济宁市高一数学第一学期期末联考试题含解析_第4页
2025届济宁市高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届济宁市高一数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则A. B.C. D.2.已知函数,下列含有函数零点的区间是()A. B.C. D.3.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.4.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.5.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型6.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或47.若两直线与平行,则它们之间的距离为A. B.C. D.8.函数的零点为,,则的值为()A.1 B.2C.3 D.49.设集合,则集合的元素个数为()A.0 B.1C.2 D.310.若集合,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若是函数的最小值,则实数a的取值范围为______12.已知A、B均为集合的子集,且,,则集合________13.已知幂函数y=xα的图象过点(4,),则α=__________.14.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____15.已知扇形的圆心角为120°,半径为3,则扇形的面积是________.16.已知函数在一个周期内的图象如图所示,图中,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式18.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积19.某口罩生产厂家目前月生产口罩总数为100万,因新冠疫情的需求,拟按照每月增长率为扩大生产规模,试解答下面的问题:(1)写出第月该厂家生产的口罩数(万只)与月数(个)的函数关系式;(2)计算第10个月该厂家月生产的口罩数(精确到0.1万);(3)计算第几月该厂家月生产的口罩数超过120万只(精确到1月)【参考数据】:20.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值21.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】∵∴∴∴故选A2、C【解析】利用零点存性定理即可求解.【详解】解析:因为函数单调递增,且,,,,.且所以含有函数零点的区间为.故选:C3、A【解析】设出幂函数,求出幂函数代入即可求解.【详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【点睛】本题考查幂函数,需掌握幂函数的定义,属于基础题.4、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.5、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.6、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.7、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,8、C【解析】根据零点存在性定理即可求解.【详解】是上的增函数,又,函数的零点所在区间为,又,.故选:C.9、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.10、C【解析】因为集合,,所以A∩B=x故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.12、【解析】根据集合的交集与补集运算,即可求得集合A中的元素.再判定其他元素是否符合要求.【详解】A、B均为集合的子集若,则若,则假设,因为,则.所以,则必含有1,不合题意,所以同理可判断综上可知,故答案为:【点睛】本题考查了元素与集合的关系,集合与集合的交集与补集运算,对于元素的分析方法,属于基础题.13、【解析】把点的坐标代入幂函数解析式中即可求出.【详解】解:由幂函数的图象过点,所以,解得.故答案为:.14、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题15、【解析】先将角度转化成弧度制,再利用扇形面积公式计算即可.【详解】扇形的圆心角为120°,即,故扇形面积.故答案为:.16、【解析】根据图象和已知信息求出的解析式,代值计算可得的值.【详解】由已知可得,在处附近单调递增,且,故,又因为点是函数在轴右侧的第一个对称中心,所以,,可得,故,因此,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案不唯一,具体见解析【解析】(1)利用参变量分离法可求得实数的取值范围;(2)分、、、四种情况讨论,结合二次不等式的解法可求得原不等式的解集.【小问1详解】由题意得,当时,在上恒成立,即当时,在上恒成立,不等式可变为,令,,则,故,解得【小问2详解】当时,解不等式,即当时,解不等式,不等式可变为,若时,不等式可变为,可得;若时,不等式可变为,当时,,可得或;当时,,即,可得且;当时,,可得或综上:当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是18、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为19、(1);(2)112.7万只;(3)16个月.【解析】(1)每月增长率为指数式,依据实际条件列出解析式即可;(2)第10个月为时,带入计算可得结果;(3)根据参考数据带入数值计算.【详解】解:(1)因为每月增长率为,所以第月该厂家生产的口罩数,.(2)第10个月该厂家月生产的口罩数万只.(3)是增函数,当时,,当时,,所以当时,即第16个月该厂家月生产的口罩数超过120万只.20、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【点睛】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力21、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论