北京育才学校2025届数学九年级第一学期开学学业水平测试试题【含答案】_第1页
北京育才学校2025届数学九年级第一学期开学学业水平测试试题【含答案】_第2页
北京育才学校2025届数学九年级第一学期开学学业水平测试试题【含答案】_第3页
北京育才学校2025届数学九年级第一学期开学学业水平测试试题【含答案】_第4页
北京育才学校2025届数学九年级第一学期开学学业水平测试试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页北京育才学校2025届数学九年级第一学期开学学业水平测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)用配方法解方程配方正确的是()A. B. C. D.2、(4分)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为A.1B.2C.3D.43、(4分)根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x

-2

0

1

y

3

p

0

A.1 B.-1 C.3 D.-34、(4分)已知函数y=2x+k﹣1的图象不经过第二象限,则()A.k<1 B.k>1 C.k≥1 D.k≤15、(4分)如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为()A.22 B.11 C.8 D.56、(4分)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间 B.3和4之间 C.﹣5和﹣4之间 D.4和5之间7、(4分)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C8、(4分)矩形ABCD中,已知AB=5,AD=12,则AC长为()A.9 B.13 C.17 D.20二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.10、(4分)计算:____________.11、(4分)将一次函数y=5x﹣1的图象向上平移3个单位,所得直线不经过第_____象限.12、(4分)计算:__________.13、(4分)若关于的方程的一个根是,则方程的另一个根是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?15、(8分)甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.(1)两地相距______千米,甲的速度为______千米/分;(2)直接写出点的坐标______,求线段所表示的与之间的函数表达式;(3)当乙到达终点时,甲还需______分钟到达终点.16、(8分)四边形中,,,,,垂足分别为、.(1)求证:;(2)若与相交于点,求证:.17、(10分)已知如图,抛物线与轴交于点A和点C(2,0),与轴交于点D,将△DOC绕点O逆时针旋转90°后,点D恰好与点A重合,点C与点B重合.(1)直接写出点A和点B的坐标;(2)求和的值;(3)已知点E是该抛物线的顶点,求证:AB⊥EB.18、(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(0,4),B(﹣4,2),C(0,2).(1)画△A1B1C1,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,4),画出平移后对应的△A2B2C2;(3)若将△A1B1C1绕点P旋转可得到△A2B2C2,请直接写出旋转中心P的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是______.20、(4分)已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.21、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.22、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.23、(4分)因式分解:=.二、解答题(本大题共3个小题,共30分)24、(8分)如图,点O是等边△ABC内一点,∠AOB=105°,∠BOC等于α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形.(2)求∠OAD的度数.(3)探究:当α为多少度时,△AOD是等腰三角形?25、(10分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.(1)如图①,证明:BE=BF.(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.26、(12分)某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:应试者面试笔试甲8690乙9283(1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:,,∴,.故选:.此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2、C【解析】①使得BE与AE重合,即可构成邻边不等的矩形,如图:∵∠B=60°,∴AC=BC,∴CD≠BC.②使得CD与AD重合,即可构成等腰梯形,如图:③使得CD与DE重合,构成有两个角为锐角的是菱形,如图:故计划可拼出①②③.故选C.3、A【解析】设一次函数的解析式为y=kx+b,将表格中的对应的x,y的值(-2,3),(1,0)代入得:,解得:.∴一次函数的解析式为y=-x+1.当x=0时,得y=1.故选A.4、D【解析】

根据函数y=2x+k﹣1的图象不经过第二象限,可以得到k﹣1≤0,从而可以得到k的取值范围,本题得以解决.【详解】解:∵函数y=2x+k﹣1的图象不经过第二象限,∴k﹣1≤0,解得,k≤1,故选:D.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.5、B【解析】

根据算术平均数的计算方法列方程求解即可.【详解】由平均数的计算公式得:(-3+x+0+1+x+6+9+5)=5解得:x=11,故选:B.考查算术平均数的计算方法,利用方程求解,熟记计算公式是解决问题的前提,是比较基础的题目.6、A【解析】

由P点坐标利用勾股定理求出OP的长,再根据已知判定A点的位置求解即可.【详解】因为点坐标为,所以,故.因为,,,即,点在x轴的负半轴,所以点的横坐标介于﹣4和﹣3之间.故选A.本题主要考查平面直角坐标系的有关概念和圆的基本概念.7、A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8、B【解析】

由勾股定理可求出BD长,由矩形的性质可得AC=BD=1.【详解】如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴1,∴AC=BD=1.故选B.本题考查了矩形的性质,勾股定理,求出DB的长是解答本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(-3,1)【解析】

根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);此题考查坐标确定位置,解题关键在于建立直角坐标系.10、﹣1【解析】

首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】原式=﹣8+1+1+3=﹣1.故答案为:﹣1.本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.11、四【解析】

根据一次函数图象的平移规律,可得答案.【详解】将一次函数y=5x﹣1的图象向上平移3个单位,得y=5x+2,直线y=5x+2经过一、二、三象限,不经过第四象限,故答案为:四。此题考查一次函数图象与几何变换,解题关键在于利用一次函数图象平移的性质12、【解析】

先把每个二次根式化简,然后合并同类二次根式即可。【详解】解:原式=2-=本题考查了二次根式的化简和运算,熟练掌握计算法则是关键。13、-2【解析】

根据一元二次方程根与系数的关系求解即可.【详解】设方程的另一个根为x1,∵方程的一个根是,∴x1+0=﹣2,即x1=﹣2.故答案为:﹣2.本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=﹣,x1x2=.三、解答题(本大题共5个小题,共48分)14、梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.【解析】

先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.【详解】解:∵在中,,,∴.∴在中,,∴.∴∴∴梯子的顶端沿墙下滑时,梯子底端并不是也外移,而是外移.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15、解:(1)24,;(2),;(3)50【解析】

(1)由图像可得结论;(2)根据题意可知F点时甲乙相遇,由此求出F点坐标,用待定系数法即得段所表示的与之间的函数表达式;(3)先求出乙到达终点时,甲距离B地的路程,再除以速度即得时间.【详解】解:(1)由图像可得两地相距24千米,甲的速度为千米/分;(2)设甲乙相遇时花费的时间为t分,根据题意得,解得所以,设线段表示的与之间的函数表达式为,根据题意得,,解得,∴线段表示的与之间的函数表达式为;(3)因为甲先出6分钟后,乙才出发,所以乙到达A地的时间为分,此时甲走了千米,距离B地千米,甲还需分钟到达终点B.本题考查了一次函数及图像在路程问题中的应用,正确理解题意及函数图像是解题的关键.16、(1)证明见解析;(2)证明见解析.【解析】

(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【详解】证明:(1)∵BE=DF,∴BE-EF=DF-EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,又AD=BC,∴四边形ABCD是平行四边形,∴AO=CO.本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.17、(1)A(-6,0)、B(0,2);(2),;(3)E(-2,8).【解析】试题分析:(1)由题意易得点D的坐标为(0,6),结合AOB是由△DOC绕点O逆时针旋转90°得到的,即可得到OA=6,OB=OC=2,由此即可得到点A和点B的坐标;(2)将点A和点C的坐标代入列出关于的二元一次方程组,解方程组即可求得的值;(3)由(2)中所得的值可得二次函数的解析式,把解析式配方即可求得点E的坐标,结合点A和点B的坐标即可求得AE2、AB2、BE2的值,这样由勾股定理的逆定理即可得到∠ABE=90°,从而可得AB⊥BE.试题解析:(1)∵在中,当时,,∴点D的坐标为(0,6),∵△AOB是由△DOC绕点O逆时针旋转90°得到的,∴OA=OD=6,OB=OC=2,∴点A的坐标为(-6,0),点B的坐标为(0,2);(2)∵点A(-6,0)和点C(2,0)在的图象上,∴,解得:;(3)如图,连接AE,由(2)可知,∴,∴点E的坐标为(-2,8),∵点A(-6,0),点B(0,2),∴AE2=,AB2=,BE2=,∴AE2=AB2+BE2,∴∠ABE=90°,∴AB⊥EB.18、(1)见解析;(2)见解析;(3)P(﹣1,2)【解析】

(1)分别作出A,B,C的对应点A1,B1,(2)分别求出A,B,C的对应点A2,B2,(3)利用旋转对称图形得出对应点的连线的交点进而得出答案..【详解】解:(1)如图所示,△A1(2)如图所示,△A2(3)P(-1,2).理由如下:∵△A1B1C1与△A2B2C2关于P点成中心对称,∴P点是B1B2的中点,又∵B1B2的坐标为(4,2)、(-6,2),∴P坐标为(-1,2).本题考查作图-旋转变换,平移变换等知识,根据题意得出对应点坐标是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【详解】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE=2,∴AB=,故答案为.本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.20、【解析】

根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.【详解】∵AB=AD,∴∠ADB=∠B=15°,∴∠DAC=∠ADB+∠B=30°,又∵CD⊥AB,∴CD=AD=×5=.故答案为:.本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.21、2.1【解析】试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.解:过点D作DE⊥AB于E,∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.1cm.∴DE=DC=2.1cm.故填2.1.点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.22、【解析】

根据锐角三角函数的定义以及正方形的性质即可求出答案.【详解】解:设正方形的边长为x,∴CE=ED=x,∴AE=AC-CE=12-x,在Rt△ABC中,,在Rt△ADE中,,∴,∴解得:x=,故答案为:.本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.23、【解析】

直接应用平方差公式即可求解..【详解】.本题考查因式分解,熟记平方差公式是关键.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)45°;(3)105°,127.5°或150°.【解析】分析:(1)由旋转的性质得到△BCO≌△ACD,再由全等三角形对应边相等得到OC=CD,根据有一个角为60°的等腰三角形是等边三角形即可得出结论;(2)由等边三角形的性质、三角形内角和定理以及旋转的性质即可得出结论.(3)若△AOD是等腰三角形,分三种情况讨论即可.详解:(1)∵△BOC旋转60°得到△ADC,∴△BCO≌△ACD,∴OC=CD,且∠OCD=60°,则△OCD是等边三角形;(2)∵△ABC为等边三角形,∴∠BAO+∠OAC=60°,∠ABO+∠OBC=60°.∵∠AOB=105°,∴∠BAO+∠ABO=75°,∴∠OAC+∠OBC=120°﹣105°=45°.∵△BOC旋转60°得到△ADC,∴△BCO≌△ACD,∴∠DAC=∠OBC,∴∠OAD=∠OAC+∠CAD=45°.(3)若△AOD是等腰三角形.∵由(1)知△OCD是等边三角形,∴∠COD=60°.由(2)知∠OAD=45°,分三种情况讨论:①当OA=OD时,∠AOD=90°,∠α=360°﹣105°﹣60°﹣90°=105°;②当OA=AD时,∠AOD=67.5°,∠α=360°﹣105°﹣60°﹣67.5°=127.5°;③当AD=OD时,∠AOD=45°,∠α=360°﹣105°﹣60°﹣45°=150°.综上所述:当α=105°,127.5°或150°时,△AOD是等腰三角形.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质.解题的关键是要分类讨论.25、(1)详见解析;(2)GO⊥AC;(3)AH=OH【解析】

(1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答(2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答(3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答【详解】(1)证明:如图①中,因为四边形ABCD为平行四边形,所以,AD∥EC,AB∥CD,所以,∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论