版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年黑龙江省绥化市绥棱县林业局中学高三月考试卷(三)数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若对,且,使得,则实数的取值范围是()A. B. C. D.2.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.3.已知是等差数列的前项和,,,则()A.85 B. C.35 D.4.函数在上的最大值和最小值分别为()A.,-2 B.,-9 C.-2,-9 D.2,-25.在中,,,,为的外心,若,,,则()A. B. C. D.6.若函数在处取得极值2,则()A.-3 B.3 C.-2 D.27.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.8.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③ B.②④C.②③ D.②③④9.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为()A. B. C. D.10.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()A.400米 B.480米C.520米 D.600米11.已知函数,若对任意,都有成立,则实数的取值范围是()A. B. C. D.12.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数()在区间上的值小于0恒成立,则的取值范围是________.14.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.15.已知数列的前项满足,则______.16.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角,,的对边分别为,,已知,.(1)求;(2)若的面积,求.18.(12分)已知,函数.(1)若,求的单调递增区间;(2)若,求的值.19.(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.20.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.21.(12分)已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.(1)证明:点在轴的右侧;(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率22.(10分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.2.C【解析】
如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.3.B【解析】
将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,,,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.4.B【解析】
由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.5.B【解析】
首先根据题中条件和三角形中几何关系求出,,即可求出的值.【详解】如图所示过做三角形三边的垂线,垂足分别为,,,过分别做,的平行线,,由题知,则外接圆半径,因为,所以,又因为,所以,,由题可知,所以,,所以.故选:D.【点睛】本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.6.A【解析】
对函数求导,可得,即可求出,进而可求出答案.【详解】因为,所以,则,解得,则.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.7.C【解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.8.D【解析】
因为,所以①不正确;因为,所以,,所以,所以函数的图象是轴对称图形,②正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;因为,所以,所以函数的最小值为,④正确.故选D.9.A【解析】
根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.10.B【解析】
根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.11.D【解析】
先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.12.B【解析】
由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴,可得,又,,可解得,故双曲线的离心率是.故选B.【点睛】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
首先根据的取值范围,求得的取值范围,由此求得函数的值域,结合区间上的值小于0恒成立列不等式组,解不等式组求得的取值范围.【详解】由于,所以,由于区间上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范围是.故答案为:【点睛】本小题主要考查三角函数值域的求法,考查三角函数值恒小于零的问题的求解,考查化归与转化的数学思想方法,属于中档题.14.3【解析】
双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.15.【解析】
由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【点睛】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.16.2【解析】
运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
试题分析:(1)根据余弦定理求出B,带入条件求出,利用同角三角函数关系求其余弦,再利用两角差的余弦定理即可求出;(2)根据(1)及面积公式可得,利用正弦定理即可求出.试题解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及题设条件,得,∴.由,得,∴,∴.点睛:解决三角形中的角边问题时,要根据条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.18.(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可得出函数的单调递增区间;(2)由得出,并求出的值,利用两角差的正弦公式可求出的值.【详解】(1)当时,,由,得,因此,函数的单调递增区间为;(2),,,,,,.【点睛】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键,属中等题.19.(1)点M的极坐标为或(2)【解析】
(1)令,由此求得的值,进而求得点的极坐标.(2)设出两点的极坐标,利用勾股定理求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设点M在极坐标系中的坐标,由,得,∵∴或,所以点M的极坐标为或(2)由题意可设,.由,得,.故时,的最大值为.【点睛】本小题主要考查极坐标的求法,考查极坐标下两点间距离的计算以及距离最值的求法,属于中档题.20.(1);(2)或【解析】
(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.21.(1)证明见解析(2)【解析】
(1)设出直线的方程,与椭圆方程联立,利用根与系数的关系求出点的横坐标即可证出;(2)根据线段的垂直平分线求出点的坐标,即可求出的面积,再表示出的面积,由与的面积相等列式,即可解出直线的斜率.【详解】(1)由题意,得,直线()设,,联立消去,得,显然,,则点的横坐标,因为,所以点在轴的右侧.(2)由(1)得点的纵坐标.即.所以线段的垂直平分线方程为:.令,得;令,得.所以的面积,的面积.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共青团电视台工作总结及工作计划
- 2024年新学期初二班主任个人工作计划
- 2024年11月精典的公司员工培训计划范文
- 幼儿园秋季学期工作计划大班
- 20242024年乡镇妇联工作计划
- 高中重点班级工作计划
- 2024年二手房买卖协议(中介参与版)
- XX年社区控烟工作计划
- 2024年地质勘测协议标准格式版
- 高中音乐教学工作计划范文
- 思想道德与法治课件:第六章 第四节 自觉尊法学法守法用法
- 文艺复兴时期的美术教案
- 酒店装饰装修工程验收表
- 南方地区 同步教案 初中地理粤人版八年级下册(2022年)
- 五人相声好好好相声《好好好》台词
- 2022年广西南宁市中考数学试卷及解析
- 围棋入门课件(专业应用)
- 区域规划与区域分析重点
- 中国书法介绍-PPT课件(PPT 36页)
- 抗菌药物使用强度(DDD)解析与控制
- 桩系梁,墩柱施工方案计划
评论
0/150
提交评论