




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十八章平行四边形八年级数学下册(RJ)教学课件菱形第2课时菱形的判定1.情景导学12.新课目标23.新课进行时4.
知识小结目录Contents5.
随堂演练6.
课后作业第一部分
情景导学情景导学想一想:菱形和矩形分别比平行四边形多了些性质?怎样判定一个四边形是矩形?情景导学
矩形菱形定义有一角是直角的平行四边形叫做矩形.有一组邻边相等的平行四边形叫做菱形.平行四边形的性质性质边角对角线四个角都是直角相等互相垂直且平分每一组对角判定有一角是直角的平行四边形对角线相等的平行四边形三个角都是直角的四边形四条边都相等情景导学一组邻边相等有一组邻边相等的平行四边形叫做菱形平行四边形菱形的性质菱形两组对边平行四条边相等两组对角分别相等邻角互补两条对角线互相垂直平分每一条对角线平分一组对角边角对角线菱形的定义是什么?性质有哪些?第二部分
新课目标新课目标
1.经历菱形判定定理的探究过程,掌握菱形的判定定理.(重点)2.会用这些菱形的判定方法进行有关的证明和计算.
(难点)第三部分
新课进行时新课进行时核心知识点一对角线互相垂直的平行四边形是菱形前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相垂直的平行四边形是菱形.你能证明这一猜想吗?新课进行时ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O
,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形. ∴OA=OC. 又∵AC⊥BD,
∴BD是线段AC的垂直平分线.
∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).新课进行时对角线互相垂直的平行四边形是菱形AC⊥BD几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.ABCD菱形ABCDABCD□ABCD菱形的判定定理:新课进行时如图,ABCD的两条对角线AC、BD相交于点O,AB=5,AO=4,BO=3.求证:四边形ABCD是菱形.ABCDO又∵四边形ABCD是平行四边形,∵
OA=4,OB=3,AB=5,证明:即AC⊥BD,∴
AB2=OA2+OB2,∴△AOB是直角三角形,∴四边形ABCD是菱形.新课进行时如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.ABCDEFO12证明:∵四边形ABCD是矩形,∴AE∥FC,∴∠1=∠2.∵EF垂直平分AC,∴AO=OC.又∠AOE=∠COF,∴△AOE≌△COF,∴EO=FO.∴四边形AFCE是平行四边形.又∵EF⊥AC ∴四边形AFCE是菱形.新课进行时在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CDB新课进行时小刚:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A、B、C、D四点.
已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?CABD根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?
四条边相等的四边形是菱形.四条边相等的四边形是菱形核心知识点二新课进行时证明:∵AB=BC=CD=AD;∴AB=CD,BC=AD.
∴四边形ABCD是平行四边形. 又∵AB=BC, ∴四边形ABCD是菱形.ABCD已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.新课进行时四条边都相等的四边形是菱形AB=BC=CD=AD几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形
ABCD是菱形.ABCD菱形ABCD菱形的判定定理:四边形ABCDABCD新课进行时下列命题中正确的是()A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形C新课进行时证明:∵∠1=∠2,又∵AE=AC,AD=AD,∴△ACD≌△AED(SAS).
同理△ACF≌△AEF(SAS).∴CD=ED,CF=EF.
又∵EF=ED,∴CD=ED=CF=EF,∴四边形ABCD是菱形.2如图,在△ABC中,AD是角平分线,点E、F分别在AB、
AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.ACBEDF1新课进行时例4如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.
四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.归纳新课进行时HGFEDCBA证明:连接AC、BD.∵四边形ABCD是矩形,∴AC=BD.∵点E、F、G、H为各边中点,∴EF=FG=GH=HE,∴四边形EFGH是菱形.如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.新课进行时CABDEFGH解:四边形EFGH是菱形.又∵AC=BD,∵点E、F、G、H为各边中点,∴EF=FG=GH=HE,∴四边形EFGH是菱形.
顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.归纳理由如下:连接AC、BD新课进行时ABCDEFGH如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:连接AC、BD.∵点E、F、G、H为各边中点,∴四边形EFGH是平行四边形.如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?四边形EFGH是矩形.同学们自己去解答吧新课进行时在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?ACDB易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可.由题意可知BC边上的高和CD边上的高相等,然后通过证△ABE≌△ADF,即得AB=AD.请补充完整的证明过程EF新课进行时如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;菱形的性质与判定的综合运用核心知识点三新课进行时(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为,∴菱形的面积为.(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.归纳新课进行时如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.解:∵四边形ABCD为平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠ACB,∠BAC=∠ACD,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠DAC=∠ACD,∴AD=DC,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.第四部分
知识小结知识小结有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四边相等的四边形是菱形.运用定理进行计算和证明菱形的判定定义法判定定理第五部分
随堂演练随堂演练1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.√
╳
╳
╳
2.一边长为5cm平行四边形的两条对角线的长分别为
24cm和26cm,那么平行四边形的面积是
.
312cm2随堂演练3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°B解析:∵将△ABC沿BC方向平移得到△DCE,∴AC∥DE,AC=DE,∴四边形ABED为平行四边形.当AC=BC时,平行四边形ACED是菱形.故选B.随堂演练ABCDOE4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.随堂演练证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO(ASA).∴AD=CE,OD=OE,∵OD=OE,OA=OC,∴四边形ADCE是平行四边形又∵∠AOD=90°,∴四边形ADCE是菱形.5.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.BCADOEM随堂演练(1)证明:由尺规作∠BAF的平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路建设材料投入与安全管理计划
- 小学三年级信息技术课外拓展计划
- 家庭心理危机干预的有效措施
- 仁爱版七年级下册英语教学计划文化渗透策略
- 小学体育与健康教育整合计划
- 数字化时代的客户关系管理-全面剖析
- 2025幼儿园师生关系改善计划
- 基于纳米技术的主动运输系统免疫疗法-全面剖析
- 旅游业服务质量提升的管理措施
- 深度优先搜索与最短路径-全面剖析
- 传染病防治知识和技能培训计划
- 《EPS处理表面氧化铁皮技术要求 》
- 【MOOC】书法鉴赏-浙江传媒学院 中国大学慕课MOOC答案
- 足球场运动草坪全年养护计划
- (高清版)DBJ52∕T 017-2014 回弹法检测山砂混凝土抗压强度技术规程
- 现代化背景下企业档案管理创新路径
- 《幼儿教育政策与法规》课件-单元4 幼儿园的保育和教育
- 2024年私募基金争议解决研究报告之一:私募基金管理人谨慎勤勉义务之边界探析-国枫研究院
- 环卫设施设备更新实施方案
- 广东省高州市2023-2024学年高一下学期期中考试数学
- 2024年高等教育文学类自考-06050人际关系心理学考试近5年真题附答案
评论
0/150
提交评论