2025届四川省外国语学校高一上数学期末联考试题含解析_第1页
2025届四川省外国语学校高一上数学期末联考试题含解析_第2页
2025届四川省外国语学校高一上数学期末联考试题含解析_第3页
2025届四川省外国语学校高一上数学期末联考试题含解析_第4页
2025届四川省外国语学校高一上数学期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省外国语学校高一上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.42.用样本估计总体,下列说法正确的是A.样本的结果就是总体的结果B.样本容量越大,估计就越精确C.样本的标准差可以近似地反映总体的平均状态D.数据的方差越大,说明数据越稳定3.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.4.已知的定义域为,则函数的定义域为A. B.C. D.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x46.下列函数中,图象的一部分如图所示的是()A. B.C. D.7.若三点在同一直线上,则实数等于A. B.11C. D.38.设集合,则=A. B.C. D.9.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.10.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知.若实数m满足,则m的取值范围是__12.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________13.定义在R上的奇函数f(x)周期为2,则__________.14.的定义域为_________;若,则_____15.下列说法中,所有正确说法的序号是_____终边落在轴上的角的集合是;

函数图象与轴的一个交点是;函数在第一象限是增函数;若,则16.若点位于第三象限,那么角终边落在第___象限三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.集合A={x|},B={x|};(1)用区间表示集合A;(2)若a>0,b为(t>2)的最小值,求集合B;(3)若b<0,A∩B=A,求a、b的取值范围.18.已知关于x的不等式的解集为R,记实数a的所有取值构成的集合为M.(1)求M;(2)若,对,有,求t的最小值.19.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.20.已知直线,.(1)若,求的值;(2)若,求的值.21.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.2、B【解析】解:因为用样本估计总体时,样本容量越大,估计就越精确,成立选项A显然不成立,选项C中,样本的标准差可以近似地反映总体的稳定状态,、数据的方差越大,说明数据越不稳定,故选B3、C【解析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.4、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域5、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.6、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D7、D【解析】由题意得:解得故选8、C【解析】由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化9、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.10、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可得,进而解不含参数的一元二次不等式即可求出结果.【详解】由题意可知,即,所以,因此,故答案:.12、【解析】设即的坐标为13、0【解析】以周期函数和奇函数的性质去求解即可.【详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:014、①.;②.3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;15、【解析】取值验证可判断;直接验证可判断;根据第一象限的概念可判断;由诱导公式化简可判断.【详解】中,取时,的终边在x轴上,故错误;中,当时,,故正确;中,第一象限角的集合为,显然在该范围内函数不单调;中,因为,所以,所以,故正确.故答案为:②④16、四【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角【详解】解:∵点位于第三象限,∴sinθcosθ<02sinθ<0,∴sinθ<0,Cosθ>0∴θ是第四象限的角故答案为四【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3),.【解析】(1)解分式不等式即可得集合A;(2)利用基本不等式求得b的最小值,将b代入并因式分解,即可得解;(3)由题意知A⊆B,对a分类讨论即求得范围【详解】解:(1)由,有,解得x≤﹣2或x>3∴A=(-∞,-2]∪(3,+∞)(2)t>2,当且仅当t=5时取等号,故即为:且a>0∴,解得故B={x|}(3)b<0,A∩B=A,有A⊆B,而可得:a=0时,化为:2x﹣b<0,解得但不满足A⊆B,舍去a>0时,解得:或但不满足A⊆B,舍去a<0时,解得或∵A⊆B∴,解得∴a、b的取值范围是a∈,b∈(-4,0).【点评】本题考查了集合运算性质、不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.18、(1)(2)1【解析】(1)分类讨论即可求得实数a的所有取值构成的集合M;(2)先求得的最大值2,再解不等式即可求得t的最小值.【小问1详解】当时,满足题意;当时,要使不等式的解集为R,必须,解得,综上可知,所以【小问2详解】∵,∴,∴,(当且仅当时取“=”)∴,∵,有,∴,∴,∴或,又,∴,∴t的最小值为1.19、(1)(2)或【解析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或20、(1);(2)【解析】(1)利用两条直线垂直的条件,结合两条直线的方程可得1×(m﹣2)+m×3=0,由此求得m的值(2)利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值【详解】(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得(2)由题意可知m不等于0,由l1∥l2可得,解得m=﹣1【点睛】本题主要考查两直线平行、垂直的条件,属于基础题21、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论