青海省西宁市示范名校2025届高二上数学期末教学质量检测模拟试题含解析_第1页
青海省西宁市示范名校2025届高二上数学期末教学质量检测模拟试题含解析_第2页
青海省西宁市示范名校2025届高二上数学期末教学质量检测模拟试题含解析_第3页
青海省西宁市示范名校2025届高二上数学期末教学质量检测模拟试题含解析_第4页
青海省西宁市示范名校2025届高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省西宁市示范名校2025届高二上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,,则a,b,c的大小关系为()A. B.C. D.2.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次第,孝和休惹外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第一个孩子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要依照次序分,要顺从父母,兄弟间和气,不要引得外人说闲话.”在这个问题中,第5个孩子分到棉花为()A.133斤 B.116斤C.99斤 D.65斤3.数列中前项和满足,若是递增数列,则的取值范围为()A. B.C. D.4.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣25.已知点的坐标为(5,2),F为抛物线的焦点,若点在抛物线上移动,当取得最小值时,则点的坐标是A.(1,) B.C. D.6.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=17.设函数,则()A.1 B.5C. D.08.如图,在长方体中,,E,F分别为的中点,则异面直线与所成角的余弦值为()A. B.C. D.9.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.410.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.11.已知圆和椭圆.直线与圆交于、两点,与椭圆交于、两点.若时,的取值范围是,则椭圆的离心率为()A. B.C. D.12.若任取,则x与y差的绝对值不小于1的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________14.如图,在直三棱柱中,,为中点,则平面与平面夹角的正切值为___________.15.已知空间向量,,,若,,共面,则实数___________.16.某足球俱乐部选拔青少年队员,每人要进行3项测试.甲队员每项测试通过的概率均为,且不同测试之间相互独立,设他通过的测试项目数为X,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.18.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围19.(12分)已知公比的等比数列和等差数列满足:,,其中,且是和的等比中项(1)求数列与的通项公式;(2)记数列的前项和为,若当时,等式恒成立,求实数的取值范围20.(12分)已知的展开式中,第4项的系数与倒数第4项的系数之比为.(1)求m的值;(2)求展开式中所有项的系数和与二项式系数和.21.(12分)在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.22.(10分)已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】构造函数,求导判断其单调性即可【详解】令,,令得,,当时,,单调递增,,,,,,,故选:A2、A【解析】根据等差数列的前n项和公式、等差数列的通项公式进行求解即可.【详解】依题意得,八个子女所得棉花斤数依次构成等差数列,设该等差数列为,公差为d,前n项和为,第一个孩子所得棉花斤数为,则由题意得,,解得,故选:A3、B【解析】由已知求得,再根据当时,,,可求得范围.【详解】解:因为,则,两式相减得,因为是递增数列,所以当时,,解得,又,,所以,解得,综上得,故选:B.4、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.5、D【解析】过作准线的垂线,垂足为,则,当且仅当三点共线时等号成立,此时,故,所以,选D6、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.7、B【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以原式等于.故选:B.8、A【解析】利用平行线,将异面直线的夹角问题转化为共面直线的夹角问题,再解三角形.【详解】取BC中点H,BH中点I,连接AI、FI、,因为E为中点,在长方体中,,所以四边形是平行四边形,所以所以,又因为F为的中点,所以,所以,则即为异面直线与所成角(或其补角).设AB=BC=4,则,则,,根据勾股定理:,,,所以是等腰三角形,所以.故B,C,D错误.故选:A.9、C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.10、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.11、C【解析】由题设,根据圆与椭圆的对称性,假设在第一象限可得,结合已知有,进而求椭圆的离心率.【详解】由题设,圆与椭圆的如下图示:又时,的取值范围是,结合圆与椭圆的对称性,不妨假设在第一象限,∴从0逐渐增大至无穷大时,,故,∴故选:C.12、C【解析】根据题意,在平面直角坐标系中分析以及与差的绝对值不小于1所对应的平面区域,求出其面积,由几何概型公式计算可得答案.【详解】根据题意,,其对应的区域为正方形,其面积,若与差的绝对值不小于1,即,即或,对应的区域为图中的阴影部分,其面积为,故与差的绝对值不小于1的概率.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.14、【解析】由条件可得均为等腰直角三角形,从而,先证明平面,从而,即得到为平面与平面夹角的平面角,从而可求解.【详解】由,则,则在直三棱柱中,平面,又平面,则又,所以平面平面,所以由由条件可得均为等腰直角三角形,则所以,即,由所以平面,又平面所以,即为平面与平面夹角的平面角.在直角中,所以故答案为:15、1【解析】根据向量共面,可设,先求解出的值,则的值可求.【详解】因为,,共面且,不共线,所以可设,所以,所以,所以,所以,故答案为:1.16、【解析】根据二项分布的方差公式即可求出【详解】因为,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),45【解析】(1)由等差数列的通项列出方程组,得出通项公式;(2)先得出,再由二次函数的性质得出最大值.【小问1详解】由,解得,即【小问2详解】,二次型函数开口向下,对称轴为,则当或时,有最大值45.18、(1)(2)【解析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为19、(1),;(2).【解析】(1)根据已知条件可得出关于方程,解出的值,可求得的值,即可得出数列与的通项公式;(2)求得,利用错位相减法可求得,分析可知数列为单调递增数列,对分奇数和偶数两种情况讨论,结合参变量分离法可得出实数的取值范围.【详解】(1)设等差数列的公差为,因为,,,且是和的等比中项,所以,整理可得,解得或.若,则,可得,不合乎题意;若,则,可得,合乎题意.所以,;;(2)因为,①,②②①得因为,即对恒成立,所以当且,,故数列为单调递增数列,当为偶数时,,所以;当为奇数时,,所以,即.综上可得20、(1)(2)所有项的系数和为,二项式系数和为【解析】(1)写出展开式的通项,求出其第4项系数和倒数第4项系数,列出方程即可求出m的值;(2)令x=1即可求所有展开项系数之和,二项式系数之和为2m.【小问1详解】展开式的通项为:,∴展开式中第4项的系数为,倒数第4项的系数为,∴,即.【小问2详解】令可得展开式中所有项的系数和为,展开式中所有项的二项式系数和为.21、(1)(2)证明见解析【解析】(1)求出双曲线的渐近线方程,由点到直线距离公式可得参数值得抛物线方程;(2)设直线方程为,,直线方程代入抛物线方程后应用韦达定理得,代入可得值,得定点坐标【小问1详解】已知双曲线的一条渐近线方程为,即,抛物线的焦点为,所以,解得(因为),所以抛物线方程为;【小问2详解】由题意设直线方程为,设由得,,,又,所以,所以,直线不过原点,,所以所以直线过定点22、(1)(2)直线过定点;理由见解析【解析】(1)根据题意可求得,进而求得椭圆方程;(2)考虑直线斜率是否存在,设直线方程并联立椭圆方程,得到根与系数的关系式,然后利用,将根与系数的关系式代入化简得到,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论