版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省昆明市禄劝县一中高二上数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为,点是椭圆上的一点,点是线段的中点,为坐标原点,若,则()A.3 B.4C.6 D.112.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.3.若,则的最小值为()A.1 B.2C.3 D.44.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.5.已知,且,则实数的值为()A. B.3C.4 D.66.对于两个平面、,“内有三个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.8.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.69.如图,A,B,C三点不共线,O为平面ABC外一点,且平面ABC中的小方格均为单位正方形,,,则()A.1 B.C.2 D.10.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除11.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.12.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点作斜率为的直线与椭圆相交于、两个不同点,若是的中点,则该椭圆的离心率___________.14.复数(其中i为虚数单位)的共轭复数______15.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x=_____________,y=_____________16.已知数列满足,则_____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆)过点A(0,),且与双曲线有相同的焦点(1)求椭圆C的方程;(2)设M,N是椭圆C上异于A的两点,且满足,试判断直线MN是否过定点,并说明理由18.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.19.(12分)在①,②,③这三个条件中任选一个补充在下面问题中,并解答下列题目设首项为2的数列的前n项和为,前n项积为,且______(1)求数列的通项公式;(2)若数列的前n项和为,令,求数列的前n项和20.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.21.(12分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值22.(10分)已知等差数列的前n项和为,等比数列的前n项和为,且,,(1)求,;(2)已知,,试比较,的大小
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用椭圆的定义可得,再结合条件即求.【详解】由椭圆的定义可知,因为,所以,因为点分别是线段,的中点,所以是的中位线,所以.故选:A.2、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.3、D【解析】由基本不等式求解即可.【详解】,当且仅当时,取等号.即所求最小值.故选:D4、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.5、B【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B6、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有三个点到的距离相等,当这三个点不在一条直线上时,可得;当这三个点在一条直线上时,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有三个点到的距离相等”是“”的必要不充分条件.故选:B.7、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A8、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.9、B【解析】根据向量的线性运算,将向量表示为,再根据向量的数量积的运算进行计算可得答案,【详解】因为,所以=,故选:B.10、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法11、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目12、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用点差法可求得的值,利用离心率公式的值.【详解】设点、,则,由已知可得,由题意可得,将两个等式相减得,所以,,因此,.故答案为:.14、##【解析】根据共轭复数的概念,即可得答案.【详解】由题意可知:复数(其中i为虚数单位)的共轭复数,故答案为:15、①.3②.5【解析】根据茎叶图进行数据分析,列方程求出x、y.【详解】由题意,甲组数据为56,62,65,70+x,74;乙组数据为59,61,67,60+y,78.要使两组数据中位数相等,有65=60+y,所以y=5.又平均数相同,则,解得x=3.故答案为:3;5.16、【解析】找到数列的规律,由此求得.【详解】依题意,,,所以数列是以为周期的周期数列,.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线过定点;理由见解析【解析】(1)根据题意可求得,进而求得椭圆方程;(2)考虑直线斜率是否存在,设直线方程并联立椭圆方程,得到根与系数的关系式,然后利用,将根与系数的关系式代入化简得到,结合直线方程,化简可得结论.【小问1详解】依题意,,所以,故椭圆方程为:【小问2详解】当直线MN的斜率不存在时,设M(),N(,),则,,此时M,N重合,不符合题意;当直线MN的斜率存在时,设MN的方程为:,M(,),N(),与椭圆方程联立可得:,即,∴,即,∴,∴,∴,当时,,直线MN:,即,令,则,∴直线过定点【点睛】本题考查了椭圆方程的求法以及直线和椭圆相交时过定点的问题,解答时要注意解题思路的顺畅,解答的难点在于运算量较大且复杂,需要十分细心.18、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.19、(1);(2).【解析】(1)选择不同的条件,再通过构造数列以及累乘法即可求得对应情况下的通项公式;(2)根据(1)中所求,求得,再利用错位相减法求其前项和即可.【小问1详解】选①:∵,即,∴.即,∴数列是常数列,∴,故;选②:∵,∴时,,则,即∴,∴;当时,也满足,∴;选③:得,所以数列是等差数列,首项为2,公差为1则,∴.【小问2详解】由(1)知当时,,∴又∵时,,符合上式,∴∴∴而相减得∴.20、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.21、(1);(2)1.【解析】(1)根据给定条件求出椭圆半焦距c,长短半轴长a,b即可得解.(2)设出直线的方程,再与椭圆C的方程联立,求出弦AB长及点P到直线的距离,然后求出面积的表达式并求其最大值即得.【小问1详解】设椭圆的标准方程为,依题意,半焦距,,即,所以椭圆的标准方程为.【小问2详解】依题意,设直线,,由消去y并整理得:,由,解得,则有,,于是得,而点到直线的距离为,因此,的面积,当且仅当,即时取“=”,所以面积最大值为1.【点睛】结论点睛:直线l:y=kx+b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职(新能源汽车检测与维修)电池管理系统单元测试题及答案
- 2025年高职建筑工程(门窗工程施工)试题及答案
- 2025年中职安全(应用实操技巧)试题及答案
- 2025年大学第三学年(艺术教育)舞蹈教学方法试题及答案
- 2025年中职大数据与会计(财务审计基础)试题及答案
- 2025年中职(环境监测技术)环境工程基础试题及答案
- 2025年大学护理学(护理质量管理)试题及答案
- 2025年高职物流装卸搬运管理(装卸搬运管理)试题及答案
- 2025年大学卫生检验与检疫(卫生检疫研究)试题及答案
- 2026年德州职业技术学院单招综合素质考试备考题库带答案解析
- GB/T 45355-2025无压埋地排污、排水用聚乙烯(PE)管道系统
- 地图用户界面设计-深度研究
- 生命体征的评估及护理
- 电梯采购与安装授权委托书
- 企业背景调查报告模板
- 《炎症性肠病》课件
- 2023年兴业银行贵阳分行招聘人员笔试上岸历年典型考题与考点剖析附带答案详解
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 加油站百日攻坚行动实施方案
- 马工程版《中国经济史》各章思考题答题要点及详解
- 运输合同纠纷答辩状
评论
0/150
提交评论