云南省丽江市古城中学2025届高二上数学期末联考模拟试题含解析_第1页
云南省丽江市古城中学2025届高二上数学期末联考模拟试题含解析_第2页
云南省丽江市古城中学2025届高二上数学期末联考模拟试题含解析_第3页
云南省丽江市古城中学2025届高二上数学期末联考模拟试题含解析_第4页
云南省丽江市古城中学2025届高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省丽江市古城中学2025届高二上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某学校的校车在早上6:30,6:45,7:00到达某站点,小明在早上6:40至7:10之间到达站点,且到达的时刻是随机的,则他等车时间不超过5分钟的概率是()A. B.C. D.2.等差数列中,是的前项和,,则()A.40 B.45C.50 D.553.若,则的值为()A.或 B.或C.1 D.-14.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个5.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)6.已知实数、满足,则的最大值为()A. B.C. D.7.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对8.将点的极坐标化成直角坐标是(

)A. B.C. D.9.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.10.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.11.已知命题对任意,总有;是方程的根则下列命题为真命题的是A. B.C. D.12.若,,则有()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列中,,则=_________.14.已知实数,满足,则的最大值为______.15.命题“,”是真命题,则的取值范围是________16.已知实数x,y满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.18.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.19.(12分)已知斜率为1的直线交抛物线:()于,两点,且弦中点的纵坐标为2.(1)求抛物线的标准方程;(2)记点,过点作两条直线,分别交抛物线于,(,不同于点)两点,且的平分线与轴垂直,求证:直线的斜率为定值.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的存在,求实数的取值范围;若问题中的不存在,请说明理由设等差数列的前n项和为,数列的前n项和为,___________,,,是否存在实数,对任意都有?21.(12分)已知函数.(1)求曲线在点处的切线方程;(2)求在区间上的最值.22.(10分)设函数(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出小明等车时间不超过5分钟能乘上车的时长,即可计算出概率.【详解】6:40至7:10共30分钟,小明同学等车时间不超过5分钟能乘上车只能是6:40至6:45和6:55至7:00到站,共10分钟,所以所求概率为.故选:B2、B【解析】应用等差数列的性质“若,则”即可求解【详解】故选:B3、B【解析】求出函数的导数,由方程求解即可.【详解】,,解得或,故选:B4、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.5、D【解析】根据图形可得(1)具有函数关系;(2)(3)的散点分布在一条直线或曲线附近,具有相关关系;(4)的散点杂乱无章,不具有相关关系.【详解】对(1),所有的点都在曲线上,故具有函数关系;对(2),所有的散点分布在一条直线附近,具有相关关系;对(3),所有的散点分布在一条曲线附近,具有相关关系;对(4),所有的散点杂乱无章,不具有相关关系.故选:D.6、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.7、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.8、A【解析】本题考查极坐标与直角坐标互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A9、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C10、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.11、A【解析】由绝对值的意义可知命题p为真命题;由于,所以命题q为假命题;因此为假命题,为真命题,“且”字联结的命题只有当两命题都真时才是真命题,所以答案选A12、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由等差数列的通项公式求出公差,进而求出.【详解】设该等差数列的公差为,则,所以.故答案为:4.14、【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图所示,化目标函数为,由图可知,当直线过点时,直线在y轴上的截距最大,z最大,联立方程组,解得点,则取得最大值为.故答案为:【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合的思想,需要注意的是:一,准确无误作出可行域;二,画目标函数所对应直线时,要注意让其斜率与约束条件中的直线的斜率比较;三,一般情况下,目标函数的最值会在可行域的端点或边界上取得.15、【解析】依题意可得,是真命题,参变分离得到在上有解,再利用构造函数利用函数的单调性计算可得.【详解】,等价于在上有解设,,则在上单调递减,在上单调递增,又,,所以,即故答案为:16、【解析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由线面平行的判定定理证明;(2)建立空间直角坐标系,用空间向量法求异面直线所成的角【小问1详解】证明:且,由三角形相似可得,,,又,,又平面,平面平面;【小问2详解】解:以为坐标原点,分别以为轴建立空间坐标系,如图.则设异面直线所成角为,则18、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.19、(1);(2)见解析.【解析】(1)涉及中点弦,用点差法处理即可求得,进而求得抛物线方程;(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设,直线,则直线分别和抛物线方程联立,解得利用,结合直线方程,即可证得直线的斜率为定值.【详解】(1)设,则,两式相减,得:由弦中点纵坐标为2,得,故.所以抛物线的标准方程.(2)由的平分线与轴垂直,可知直线,的斜率存在,且斜率互为相反数,且不等于零,设直线由得由点在抛物线上,可知上述方程的一个根为.即,同理.直线的斜率为定值.【点睛】本题考查应用点差法处理中点弦问题,直线与抛物线中,斜率为定值问题,考查分析问题的能力,考查学生的计算能力,难度较难.20、答案见解析【解析】由已知条件可得,假设时,取最小值,则,若补充条件是①,则可求得,代入化简可求出的取值范围,从而可求得答案,若补充条件是②,则可得,该数列是递减数列,所以不存在k,使得取最小值,若补充条件是③,则可得,代入化简可求出的取值范围,从而可求得答案,【详解】解:等差数列的公差为d,当时,,得,从而,当时,得,所以数列是首项为,公比为的等比数列,所以,由对任意,都有,当等差数列的前n项和存在最小值时,假设时,取最小值,所以;若补充条件是①,因为,,从而,由得,所以,由等差数列的前n项和存在最小值,则,得,又,所以.所以,故实数的取值范围为若补充条件是②,由,即,又,所以.所以,由于该数列是递减数列,所以不存在k,使得取最小值,故实数不存在以下为严格的证明:由等差数列的前n项和存在最小值,则,得,所以,所以不存在k,使得取最小值,故实数不存在若补充条件是③,由,得,又,所以,所以由等差数列的前n项和存在最小值,则,得,又,所以.所以存在,使得取最小值,所以,故实数的取值范围为21、(1)(2)最小值为0,最大值为4【解析】(1)利用导数求得切线方程.(2)结合导数求得在区间上的最值.【小问1详解】,所以曲线在点处的切线方程为.【小问2详解】,所以在区间递增;在区间递减,,所以在区间上的最小值为,最大值为.22、(1)的单调递减区间为,单调递增区间为;(2).【解析】(1)求出,进而判断函数的单调性,然后讨论符号后可得函数的单调区间;(2)令,则有两个不同的零点,利用导数讨论的单调性并结合零点存在定理可得实数的取值范围.【小问1详解】当时,,,记,则,所以在上单调递增,又,所以当时,;当时,,所以单调递减区间为,单调递增区间为【小问2详解】令,得,记,则,令得,列表得.x0↘极小值↗要使在上有两个零点,则,所以且函数在和上各有一个零点当时,,,,则,故上无零点,与函数在上有一个零点矛盾,故不满足条件所以,又因为,所以考虑,设,,则,则在上单调递减,故当时,,所以,且,因为,所以,由零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论