上海市四区2025届高二上数学期末质量跟踪监视试题含解析_第1页
上海市四区2025届高二上数学期末质量跟踪监视试题含解析_第2页
上海市四区2025届高二上数学期末质量跟踪监视试题含解析_第3页
上海市四区2025届高二上数学期末质量跟踪监视试题含解析_第4页
上海市四区2025届高二上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市四区2025届高二上数学期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.2.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数图象都有对称中心,且“拐点”就是对称中心.设函数,则()A. B.C. D.3.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.4.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.5.若函数在区间上有两个极值点,则实数的取值范围是()A. B.C. D.6.中,内角A,B,C的对边分别为a,b,c,若,则等于()A. B.C. D.7.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内8.已知函数.设命题的定义域为,命题的值域为.若为真,为假,则实数的取值范围是()A. B.C. D.9.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球10.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形11.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.12.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.144二、填空题:本题共4小题,每小题5分,共20分。13.命题为假命题,则实数的取值范围为_____________.14.已知B(,0)是圆A:内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为_________________.15.在数列中,,,则数列的前6项和为___________.16.已知函数,,则曲线在处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求18.(12分)在公差为的等差数列中,已知,且成等比数列.(Ⅰ)求;(Ⅱ)若,求.19.(12分)已知关于的不等式的解集为.(1)求的值;(2)若,求的最小值,并求此时的值.20.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值21.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值22.(10分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A2、B【解析】根据“拐点”的概念可判断函数的对称中心,进而求解.【详解】,,,令,解得:,而,故函数关于点对称,,,故选:B.3、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.4、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】5、D【解析】由题意,即在区间上有两个异号零点,令,利用函数的单调性与导数的关系判断单调性,数形结合即可求解【详解】解:由题意,即在区间上有两个异号零点,构造函数,则,令,得,令,得,所以函数在上单调递增,在上单调递减,又时,,时,,且,所以,即,所以的范围故选:D6、A【解析】由题得,进而根据余弦定理求解即可.【详解】解:依题意,即,所以,所以,由于,所以故选:A7、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D8、C【解析】根据一元二次不等式恒成立和二次函数值域可求得为真命题时的取值范围,根据和的真假性可知一真一假,分类讨论可得结果.【详解】若命题为真,则在上恒成立,,;若命题为真,则的值域包含,则或,;为真,为假,一真一假,若真假,则;若假真,则;综上所述:实数的取值范围为.故选:C.9、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.10、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.11、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.12、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】依据题意列出关于实数的不等式,即可求得实数的取值范围.【详解】命题为假命题,则为真命题则判别式,解之得故答案为:14、【解析】利用椭圆的定义可得轨迹方程.【详解】连接,由题意,,则,由椭圆的定义可得动点D的轨迹为椭圆,其焦点坐标为,长半轴长为2,故短半轴长为1,故轨迹方程为:.故答案为:.15、129【解析】依次写出前6项,即可求得数列的前6项和.【详解】数列中,,则,,,则数列的前6项和为故答案为:12916、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由已知变形得出,即可证得结论成立;(2)计算,利用并项求和法可求得.【小问1详解】证明:对任意的,,则,且,故数列为等比数列,且该数列的首项为,公比也为,故.【小问2详解】解:,所以,,因此,.18、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由题意求得数列的公差后可得通项公式.(Ⅱ)结合条件可得,分和两种情况去掉中的绝对值后,利用数列的前n项和公式求解试题解析:(Ⅰ)∵成等比数列,∴,整理得,解得或,当时,;当时,所以或(Ⅱ)设数列前项和为,∵,∴,当时,,∴;当时,综上19、(1);(2),.【解析】(1)利用根与系数的关系,得到等式和不等式,最后求出的值;(2)化简函数的解析式,利用基本不等式可以求出函数的最小值.【小问1详解】由题意知:,解得【小问2详解】由(1)知,∴,由对勾函数单调性知在上单调递减,∴,即当,函数的最小值为20、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.21、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论