版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市颍州区第三中学2025届高二数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.2.若直线a,b是异面直线,点O是空间中不在直线a,b上的任意一点,则()A.不存在过点O且与直线a,b都相交的直线B.过点O一定可以作一条直线与直线a,b都相交C.过点O可以作无数多条直线与直线a,b都相交D.过点O至多可以作一条直线与直线a,b都相交3.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.34.某四面体的三视图如图所示,该四面体的体积为()A. B.C. D.5.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件6.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.127.下列函数求导错误的是()A.B.C.D.8.下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cm B.20cmC.25cm D.30cm9.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为10.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.11.已知向量,,且,则的值为()A. B.C.或 D.或12.已知抛物线的焦点为F,点P为该抛物线上的动点,若,则当最大时,()A. B.1C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.设点是双曲线上的一点,、分别是双曲线的左、右焦点,已知,且,则双曲线的离心率为________14.已知空间向量,且,则___________.15.若,满足不等式组,则的最大值为________.16.曲线在点处的切线方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.18.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值19.(12分)已知椭圆的左、右焦点分别是,点P是椭圆C上任一点,若面积的最大值为,且离心率(1)求C的方程;(2)A,B为C的左、右顶点,若过点且斜率不为0的直线交C于M,N两点,证明:直线与的交点在一条定直线上20.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围21.(12分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和22.(10分)在等差数列中,,前10项和(1)求列通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题2、D【解析】设直线与点确定平面,由题意可得直线与平面相交或平行.分两种情形,画图说明即可.【详解】点是空间中不在直线,上的任意一点,设直线与点确定平面,由题意可得,故直线与平面相交或平行.(1)若直线与平面相交(如图1),记,①若,则不存在过点且与直线,都相交的直线;②若与不平行,则直线即为过点且与直线,都相交的直线.(2)若直线与平面平行(如图2),则不存在过点且与直线,都相交的直线.综上所述,过点至多有一条直线与直线,都相交.故选:D.3、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.4、A【解析】可由三视图还原原几何体,然后根据题意的边角关系,完成体积的求解.【详解】由三视图还原原几何体如图:其中平面,,则该四面体的体积为.故选:A.5、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.6、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C7、C【解析】每一个选项根据求导公式及法则来运算即可判断.【详解】对于A,,正确;对于B,,正确;对于C,,不正确;对于D,,正确.故选:C8、B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B9、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A10、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A11、C【解析】根据空间向量平行的性质得,代入数值解方程组即可.【详解】因为,所以,所以,所以,解得或.故选:C.12、B【解析】根据抛物线的定义,结合换元法、配方法进行求解即可.【详解】因为点P为该抛物线上的动点,所以点P的坐标设为,抛物线的焦点为F,所以,抛物线的准线方程为:,因此,令,,当时,即当时,有最大值,最大值为1,此时.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由双曲线的定义可求得、,利用勾股定理可得出关于、的齐次等式,进而可求得该双曲线的离心率.【详解】由双曲线定义可得,故,由勾股定理可得,即,可得,因此,该双曲线的离心率为.故答案为:.14、【解析】根据空间向量共线的坐标表示可得出关于的等式,求出的值即可.【详解】由已知可得,解得.故答案为:.15、10【解析】作出不等式区域,如图所示:目标最大值,即为平移直线的最大纵截距,当直线经过点时最大为10.故答案为10.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、x-y-2=0【解析】解:因为曲线在点(1,-1)处的切线方程是由点斜式可知为x-y-2=0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)选①,利用化已知等式为,得是等差数列,公差,求出其通项公式后,再由求得通项公式,注意;选②,由可变形已知条件得是等差数列,从而求得通项公式;选③,已知式两边同除以,得出,以下同选①;(2)由错位相减法求和【小问1详解】选①,由得,,所以,即,所以是等差数列,公差,又,,,所以,,时,也适合所以;选②,由得,所以等差数列,公差为,又,所以;选③,由得,以下同选①,【小问2详解】由(1),,,两式相减得,所以18、(1);(2)或.【解析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.19、(1);(2)证明见解析.【解析】(1)用待定系数法求出椭圆的方程;(2)设直线MN的方程为x=my+1,设,用“设而不求法”表示出.由直线AM的方程为,直线BN的方程为,联立,解得:,即可证明直线AM与BN的交点在直线上.【小问1详解】由题意可得:,解得:,所以C的方程为.【小问2详解】由(1)得A(-2,0),B(2,0),F2(1,0),设直线MN的方程为x=my+1.设,由,消去y得:,所以.所以.因为直线AM的方程为,直线BN的方程为,二者联立,有,所以,解得:,直线AM与BN的交点在直线上.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.20、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值范围是21、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选③由取与原式相减可得,取可求,由此可得,故,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,【详解】解:选①:因为,数列为常数列,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024定制版二手家电电机销售协议细则版B版
- 2024年工程款支付附加连带责任担保条款合同版
- 2024年专业售后服务合作协议范例版
- 2024年个人贷款分期还款详细合同版B版
- 2024委托贴牌生产协议例本
- 2024垃圾桶项目采购合同
- 2024年事业单位教师职务聘用合同书版B版
- 2024年中医医院工会综合服务协议版B版
- 2024年专业市场摊位租赁协议简本一
- 2024年度光纤熔接工程协议一
- 中建《房屋建筑工程导则》概述
- 人教版九年级上册第六单元碳和碳的氧化物《拯救水草大行动二氧化碳制取的研究》全国课
- Unit7《Happy Birthday!》-2024-2025学年三年级上册英语单元测试卷(译林版三起 2024新教材)
- 2024年浙江省中考英语试题卷(含答案解析)
- 人教版(2019)必修 第二册Unit 2 Wildlife Protection Reading for writing教学设计
- 便秘的护理病例分析
- 【课件】Unit+4+My+Favourite+Subject大单元教学说课课件人教版(2024)七年级英语上册
- 四年级上册心理健康教案-3《老师我成长中的航标》北师大版
- 大学英语六级考试 2022 年 9 月真题(第一套)
- 江苏省南京市化学中考试题及解答参考(2024年)
- 第10课《往事依依》公开课一等奖创新教学设计 统编版语文七年级上册
评论
0/150
提交评论