湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】_第1页
湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】_第2页
湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】_第3页
湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】_第4页
湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页湖南省娄底娄星区四校联考2024-2025学年数学九年级第一学期开学质量跟踪监视试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数y=ax﹣a的大致图象是()A. B. C. D.2、(4分)点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能确定3、(4分)已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为()A.1或-5 B.-5或3 C.-3或1 D.-3或54、(4分)下列运算错误的是()A. B.C. D.5、(4分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠26、(4分)一元二次方程2x(x+1)=(x+1)的根是()A.x=0 B.x=1C. D.7、(4分)下列是假命题的是()A.平行四边形对边平行 B.矩形的对角线相等C.两组对边分别平行的四边形是平行四边形 D.对角线相等的四边形是矩形8、(4分)已知,则化简的结果是()A. B. C.﹣3 D.3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为_________.10、(4分)若关于x的分式方程产生增根,则m=_____.11、(4分)若二次根式有意义,则实数m的取值范围是_________.12、(4分)如图,在4×4方格纸中,小正方形的边长为1,点A,B,C在格点上,若△ABC的面积为2,则满足条件的点C的个数是_____.13、(4分)如图,∠MON=∠ACB=90°,AC=BC,AB=5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.15、(8分)如图,折叠长方形ABCD的一边AD,使点D落在BC上的点F处,已知AB=8,BC=10,求EC.16、(8分)某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?17、(10分)哈市某专卖店销售某品牌服装,设服装进价为80元,当每件服装售价为240元时,月销售为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每件价格每下降10元时,月销售量就会增加20件,设每件服装售价为x(元),该专卖店的月利润为y(元).

(1)求出y与x的函数关系式(不要求写出x的取值范围);

(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少?18、(10分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.(1)求直线AB的函数解析式;(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直线与轴的交点坐标是________________.20、(4分)如图,直线与直线交于点,则不等式的解集是__________.21、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.22、(4分)张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=.23、(4分)如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是.(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是.二、解答题(本大题共3个小题,共30分)24、(8分)先化简再求值:,再从0,﹣1,2中选一个数作为a的值代入求值.25、(10分)为了节约能源,某城市开展了节约水电活动,已知该城市共有10000户家庭,活动前,某调查小组随机抽取了部分家庭每月的水电费的开支(单位:元),结果如左图所示频数直方图(每一组含前一个边界值,不含后一个边界值);活动后,再次调查这些家庭每月的水电费的开支,结果如表所示:(1)求所抽取的样本的容量;(2)如以每月水电费开支在225元以下(不含)为达到节约标准,请问通过本次活动,该城市大约增加了多少户家庭达到节约标准?(3)活动后,这些样本家庭每月水电费开支的总额能否低于6000元?(4)请选择一个适当的统计量分析活动前后的相关数据,并评价节约水电活动的效果.26、(12分)如图所示,矩形OABC的邻边OA、OC分别与x、y轴重合,矩形OABC的对称中心P(4,3),点Q由O向A以每秒1个单位速度运动,点M由C向B以每秒2个单位速度运动,点N由B向C以每秒2个单位速度运动,设运动时间为t秒,三点同时出发,当一点到达终点时同时停止.(1)根据题意,可得点B坐标为__________,AC=_________;(2)求点Q运动几秒时,△PCQ周长最小?(3)在点M、N、Q的运动过程中,能否使以点O、Q、M、N为顶点的四边形是平行四边形?若能,请求出t值;若不能,请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

将y=ax-a化为y=a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A、B、D中的图象都不过点(1,0),所以C项图象正确.故本题正确答案为C.本题主要考查一次函数的图象和一次函数的性质.2、C【解析】

先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.【详解】把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,∵k<0,∴a<b.故选C.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.3、D【解析】

根据函数二次函数(为常数)可得函数对称轴为,由自变量的值满足时,其对应的函数值的最小值为4,再对h的大小进行分类讨论,当时,自变量的值满足时,y随x的增大而减小,当x=3时,y取得最小值为,可解得h的值,并且注意检验h要满足;当时,自变量的值满足时,y随x的增大而增大,当时,y取得最小值为,可解得h的值,并且注意检验h要满足,即可得出答案.【详解】解:∵二次函数(为常数),∴函数对称轴为;∵函数的二次项系数a=1,∴函数开口向上,当时,的值满足在对称轴的左侧,y随x的增大而减小,∴当x=3时,y取得最小值,此时,解得:∵,∴舍去,;当时,的值满足在对称轴的右侧,y随x的增大而增大,∴当时,y取得最小值,此时,解得:∵,∴舍去,;综上所述,或;故答案为D.本题考查二次函数的最值与函数的增减性之间的关系,求出函数的对称轴,并且分析函数的增减性是做题关键.在分类讨论的时候一定要注意分类中的h是有取值范围的,在取值范围内的结果才是最终的正确结果.4、A【解析】

根据二次根式的乘法法则和二次根式的性质逐个判断即可.【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意;故选:A.本题考查了二次根式的乘除和二次根式的性质,能灵活运用二次根式的乘法法则进行化简是解此题的关键,注意.5、C【解析】解:由题意得:4﹣1x≥0,解得:x≤1.故选C.6、D【解析】

移项,提公因式法分解因式,即可求得方程的根.【详解】解:2x(x+1)=(x+1),

2x(x+1)-(x+1)=0,

(2x-1)(x+1)=0,

则方程的解是:x1=,x2=-1.

故选:D.本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.7、D【解析】

利用平行四边形的判定、矩形的性质及矩形的判定方法分别判断后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,正确,是真命题;

B、矩形的对角线相等,正确,是真命题;

C、两组对边分别平行的四边形是平行四边形,正确,是真命题;

D、对角线相等的平行四边形是矩形,故错误,是假命题,

故选:D.本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定、矩形的性质及矩形的判定方法,难度不大.8、D【解析】

先把变形为+,根据a的取值范围可确定1-a和a-4的符号,然后根据二次根式的性质即可得答案.【详解】=+∵2<a<4,∴1-a<0,a-4<0,∴+=-(1-a)-(a-4)=-1+a-a+4=3,故选D.本题考查了二次根式的化简,当a≥0时,=a;当a<0时,=-a;熟练掌握二次根式的性质是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】试题分析:∵▱ABCD的周长为20cm,∴2(BC+CD)=20,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,即△DOE的周长为1.故答案是1.考点:三角形中位线定理.10、1【解析】

方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.【详解】解:方程去分母得:,解得:,由方程有增根,得到,则的值为1.故答案为:1.此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11、m≤3【解析】

由二次根式的定义可得被开方数是非负数,即可得答案.【详解】解:由题意得:解得:,故答案为:.本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.12、1.【解析】

根据三角形的面积公式,只要找出底乘以高等于4的点的位置即可.【详解】解:如图,点C的位置可以有1种情况.故答案为:1.本题主要考查了勾股定理及三角形的面积,根据格点的情况,按照一定的位置查找,不要漏掉而导致出错.13、.【解析】

如图,取AC的中点E,连接OE、DE、OD,由OD≤OE+DE,可得当O、D、E三点共线时,点D到点O的距离最大,再根据已知条件,结合三角形的中位线定理及直角三角形斜边中线的性质即可求得OD的最大值.【详解】如图,取AC的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,∵∠ACB=90°,AC=BC,AB=5,∴AC=BC=∵点E为AC的中点,点D为AB的中点,∴DE为△ABC的中位线,∴DE=BC=;在Rt△ABC中,点E为AC的中点,∴OE=AC=;∴OD的最大值为:OD+OE=.故答案为:.本题考查了直角三角形斜边上的中线等于斜边的一半的性质、三角形的中位线定理及勾股定理等知识点,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)BE=AF,BE⊥AF;(2)GD是∠EGF的角平分线,证明见解析,GD=2105;(3)FQ=【解析】

(1)根据已知条件可先证明△BAE≌△ADF,得到BE=AF,再由角的关系得到∠AGE=90°从而证明BE⊥AF;(2)过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,根据勾股定理和三角形的面积相等求出DN,然后证明△AEG≌△DEM,得到DN=DM,再根据角平分线的性质可证明GD平分∠EGF,进而在等腰直角三角形中求得GD;(3)过点G作GH∥AQ交FQ于H,可得到四边形DFHG是平行四边形,进而可得△FGH∽△FAQ,然后根据三角形相似的性质可求得FQ.【详解】解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DF,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴BE⊥AF(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,AF=5,∵S△ADF=12AD×FD=12∴DN=25∵△BAE≌△ADF,∴S△BAE=S△ADF,∵BE=AF,∴AG=DN,∵AE=DE,∠MED=∠AEG,∠DME=∠AGM,∴△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,即GD平分∠EGF,∴∠DGN=12∠MGN=45°∴△DGN是等腰直角三角形,∴GD=2DN=210(3)如图3,由(2)知,GD=2105,AF=5,AG=DN=∴FG=AF﹣AG=35过点G作GH∥AQ交FQ于H,∴GH∥DF,∵FQ∥DG,∴四边形DFHG是平行四边形,∴FH=DG=210∵GH∥AQ,∴△FGH∽△FAQ,∴FGAF∴35∴FQ=210全等三角形的判定和性质、勾股定理、角平分线的性质、平行四边形的判定和性质都是本题的考点,此题综合性比较强,熟练掌握基础知识并作出合适的辅助线是解题的关键.15、EC=1【解析】

根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】∵四边形ABCD为矩形,

∴DC=AB=8cm;∠B=∠C=90°;

由题意得:AF=AD=10,

设EF=DE=xcm,EC=8-x;

由勾股定理得:BF2=102-82,

∴BF=6,

∴CF=10-6=4;

在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,

解得:x=5,

EC=8-5=1.

故答案为:1此题主要考查了翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.16、小区种植这种草坪需要2160元.【解析】

仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、CD、AD的长度关系可得三角形ACD为直角三角形,AD为斜边;由此看,四边形ABCD由Rt△ABC和Rt△ACD构成,则容易求解.【详解】如图,连接AC,∵在△ABC中,AB=3,BC=4,∠B=90°,∴AC==5,又∵CD=12,DA=13,∴AD2=AC2+CD2=169,∴∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36(平方米),∴60×36=2160(元),答:小区种植这种草坪需要2160元.本题考查了勾股定理以及其逆定理的应用,熟练掌握是解题的关键.17、(1)y=−2x2+840x−54400;(2)售价应定为每件210元,最大利润是33800元.【解析】

(1)由题意得到每件服装的利润为

x−80

元,则可得月销售量为

200+,再根据月利润等于总销量乘以每件服装的利润即可得到;(2)

由(1)得到y=−2x2+840x−54400经过变形得到y=−2(x−210)2+33800,即可得到答案.【详解】解:(1)每件服装的利润为

x−80

元,月销售量为

200+,所以月利润:

y=(x-80)⋅(

200+)=(x−80)(680−2x)=−2x2+840x−54400,所以函数关系式为y=−2x2+840x−54400;

(2)

y=−2x2+840x−54400=−2(x−210)2+33800

所以,当x=210时,y最大=33800

.

即售价应定为每件210元,最大利润是33800元.

答:售价应定为每件210元,最大利润是33800元.本题考查一元二次函数的实际应用,解题的关键是读懂题意,得到等式关系.18、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).【解析】

(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,【详解】(1)设直线AB的函数解析式为y=kx+b,则解方程组得直线AB的函数解析式为y=-x+6,(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则,解方程组得所以直线AB′的解析式为,当x=0时,y=,所以M点的坐标为(0,),(3)有符合条件的点M,理由如下:如图:因为△ABM是以AB为直角边的直角三角形,当∠MAB=90°时,直线MA垂直直线AB,∵直线AB的解析式为y=-x+6,∴设MA的解析式为y=x+b,∵点A(4,2),∴2=4+b,∴b=-2,当∠ABM′=90°时,BM′垂直AB,设BM′的解析式为y=x+n,∵点B(6,0)∴6+n=0∴n=-6,即有满足条件的点M为(0,-2)或(0,-6).本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

根据一次函数的性质,与轴的交点即横坐标为0,代入即可得解.【详解】根据题意,得当时,,即与轴的交点坐标是故答案为.此题主要考查一次函数的性质,熟练掌握,即可解题.20、【解析】

不等式的解集为直线在直线上方部分所对的x的范围.【详解】解:由图象可得,当时,直线在直线上方,所以不等式的解集是.故答案为:本题考查了一次函数与不等式的关系,合理利用图象信息是解题的关键.21、【解析】

通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.【详解】解:设AH=e,AE=BE=f,BF=HD=m在Rt△AHE中,e2+f2=82在Rt△EFH中,f2=em在Rt△EFB中,f2+m2=152(e+m)2=e2+m2+2em=189AD=e+m=3故答案为3本题考查了翻折的性质,利用直角三角形建立方程关系求解.22、y=5x+1.【解析】试题分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.试题解析:根据题意可知y=5x+1.考点:列代数式.23、【答题空1】两组对边分别相等的四边形是平行四边形【答题空2】有一个角是直角的平行四边形是矩形【解析】

(1)∵AB=CD,EF=GH,∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)(2)由(2)知四边形为平行四边形,∵∠C为直角,∴四边形为矩形.(一个角为直角的平行四边形为矩形)根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.二、解答题(本大题共3个小题,共30分)24、.【解析】

首先将分式进行化简,特别注意代入计算的数,不能使分式的分母为0.【详解】解:原式===,∵a≠0,a2﹣1≠0,a2+a≠0,即a≠0,且a≠±1,∴取a=2,原式=.本题主要考查分式化简求值,注意分式的分母不能为025、(1)40;(2)1250户;(3)活动后,这些样本家庭每月水电费开支的总额不低

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论