版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页安徽省定远县2025届数学九年级第一学期开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤12、(4分)下列各选项中因式分解正确的是()A. B.C. D.3、(4分)下列方程中,属于一元二次方程的是()A. B. C. D.4、(4分)如图,矩形的对角线相交于点,,则的周长为()A.12 B.14 C.16 D.185、(4分)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.2 B.3 C.6 D.6、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=2,则△ABF的周长为()A.43 B.83 C.6+3 D.6+237、(4分)已知x(x﹣2)=3,则代数式2x2﹣4x﹣7的值为()A.6 B.﹣4 C.13 D.﹣18、(4分)用配方法解一元二次方程时,此方程配方后可化为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.10、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.11、(4分)化简________.12、(4分)函数中,当满足__________时,它是一次函数.13、(4分)已知一元二次方程:2x2+5x+1=0的两个根分别是x1、x2,则=________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,矩形ABCD中,,,E、F分别是AB、CD的中点求证:四边形AECF是平行四边形;是否存在a的值使得四边形AECF为菱形,若存在求出a的值,若不存在说明理由;如图,点P是线段AF上一动点且求证:;直接写出a的取值范围.15、(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为
A(-3,0),与y轴交点为B,且与正比例函数y=43x的图象的交于点
C(m(1)求m的值及一次函数
y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.16、(8分)先化简,再求值:,其中x是的整数部分.17、(10分)用公式法解下列方程:
(1)2x2−4x−1=0;
(2)5x+2=3x2.18、(10分)如图,在菱形中,.请根据下列条件,仅用无刻度的直尺过顶点作菱形的边上的高。(1)在图1中,点为中点;(2)在图2中,点为中点.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为________________20、(4分)一组数据2,3,4,5,3的众数为__________.21、(4分)不等式组的解集是_________.22、(4分)计算=________________.23、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.二、解答题(本大题共3个小题,共30分)24、(8分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.(1)甲种服装进价为元/件,乙种服装进价为元/件;(2)若购进这100件服装的费用不得超过7500元.①求甲种服装最多购进多少件?②该服装店对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?25、(10分)(1)因式分解:(2)解方程:26、(12分)如图,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.点P从点A出发,以5cm/s的速度沿AC向终点C匀速移动.过点P作PQ⊥AB,垂足为点Q,以PQ为边作正方形PQMN,点M在AB边上,连接CN.设点P移动的时间为t(s).(1)PQ=______;(用含t的代数式表示)(2)当点N分别满足下列条件时,求出相应的t的值;①点C,N,M在同一条直线上;②点N落在BC边上;(3)当△PCN为等腰三角形时,求t的值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据题意若函数y=有意义,可得x-1≠0;解得x≠1;故选B2、D【解析】
直接利用公式法以及提取公因式法分解因式进而判断即可.【详解】解:A.,故此选项错误;B.,故此选项错误;C.,故此选项错误;D.,正确.故选D.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.3、B【解析】
利用一元二次方程的定义对选项进行判断即可.【详解】解:A、2x﹣1=3x是一元一次方程,不符合题意;B、x2=4是一元二次方程,符合题意;C、x2+3y+1=0是二元二次方程,不符合题意;D、x3+1=x是一元三次方程,不符合题意,故选:B.此题考查一元二次方程的定义,熟练掌握方程的定义是解本题的关键.4、A【解析】
根据题意可得三角形ABO是等边三角形,利用性质即可解答.【详解】解:已知在矩形ABCD中,AO=BO,又因为∠BOC=120°,故∠AOB=60°,可得三角形AOB为等边三角形,又因为AC=8,则AB=4,则三角形AOB的周长为12.答案选A.本题考查矩形和等边三角形的性质,熟悉掌握是解题关键.5、B【解析】
根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF是菱形,所以BE,AE可求出进而可求出BC的长.【详解】∵四边形ABCD是矩形,∴∠A=90°,即BA⊥BF,∵四边形BEDF是菱形,∴EF⊥BD,∠EBO=∠DBF,∵EF=AE+FC,AE=CF,EO=FO∴AE=EO=CF=FO,∴AB=BO=3,∠ABE=∠EBO,∴∠ABE=∠EBD=∠DBC=30°,∴BE=,∴BF=BE=2,∴CF=AE=,∴BC=BF+CF=3,故选B.6、D【解析】
先利用直角三角形斜边中线性质求出AB,再利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】∵AF⊥BC,点D是边AB的中点,∴AB=2DF=4,∵点D,E分别是边AB,AC的中点,∴DE∥BC,∴∠B=∠ADE=30°,∴AF=12AB=2由勾股定理得,BF=AB则△ABF的周长=AB+AF+BF=4+2+23=6+23,故选:D.此题考查三角形中位线定理,含30度角的直角三角形,直角三角形斜边上的中线,解题关键在于利用30角所对的直角边等于斜边的一半求解.7、D【解析】
将x(x﹣2)=3代入原式=2x(x﹣2)﹣7,计算即可得到结论.【详解】当x(x﹣2)=3时,原式=2x(x﹣2)﹣7=2×3﹣7=6﹣7=﹣1.故选D.本题考查了代数式求值,解题的关键是掌握整体代入思想的运用.8、A【解析】【分析】按照配方法的步骤进行求解即可得答案.【详解】2x2-6x+1=0,2x2-6x=-1,x2-3x=,x2-3x+=+(x-)2=,故选A.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.二、填空题(本大题共5个小题,每小题4分,共20分)9、20【解析】
令S=380m,即可求出t的值.【详解】解:当s=380m时,9t+t2=380,整理得t2+18t﹣760=0,即(t﹣20)(t+38)=0,解得t1=20,t2=﹣38(舍去).∴行驶380米需要20秒,故答案为:20本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.10、.【解析】
直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.【详解】∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC=,∵OE⊥BC,∴OE•BC=OB•OC,∴OE=.11、【解析】
根据二次根式有意义条件求解即可.【详解】根据题意知:2-a≥0,a-2≥0,解得,a=2,∴3×2+0+0=6.故答案为:6.此题主要考查了二次根式有意义的条件的应用,注意二次根式有意义的条件是被开方数是非负数.12、k≠﹣1【解析】分析:根据一次函数的定义解答即可,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.详解:由题意得,k+1≠0,∴k≠-1.故答案为k≠-1.点睛:本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.13、【解析】
依据一元二次方程根与系数的关系:x1+x2=-,x1·x2=,即可求出.【详解】因为2x2+5x+1=0,所有a=2、b=5、c=1,所以x1+x2=-,x1·x2=,有因为=x1x2(x1+x2),所以=-×=本题考查一元二次方程根与系数之间的关系,熟练掌握相关知识是解的关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)不存在;(3)①证明见解析;②.【解析】
(1)由矩形性质得,,再证且即可;(2)不存在,由知:当时,四边形AECF为菱形,可得,此方程无解;(3)由平行线性质得,证得,,由,,得OE是三角形的中位线,所以,根据中垂线性质得;如图当P与F重合时,,的取值范围是.【详解】证明:四边形ABCD是矩形,,,又、F分别是边AB、CD的中点,,四边形AECF是平行四边形;解:不存在,由知:四边形AECF是平行四边形;当时,四边形AECF为菱形,四边形ABCD是矩形,,,,方程无解,故不存在这样的a;解:如图,四边形AECF是平行四边形,,,,,,,,,;如图,当P与F重合时,,的取值范围是.本题考核知识点:矩形性质,菱形判定,三角形中位线.解题关键点:综合运用矩形性质和菱形判定和三角形中位线性质.15、(1)m的值为3,一次函数的表达式为y=(2)点P的坐标为(0,6)、(0,-2)【解析】(1)首先利用待定系数法把C(m,4)代入正比例函数y=43(2)利用△BPC的面积为6,即可得出点P的坐标.解:(1)∵点C(m,4)在正比例函数y=4∴4=43·m,m=3即点C坐标为(3∵一次函数y=kx+b经过A(-3,0)、点C(3,4)∴{0=-3k+b4=3k+b∴一次函数的表达式为y=(2)点P的坐标为(0,6)、(0,-2)“点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.16、,【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.【详解】解:原式=∵x是的整数部分,∴x=2.当x=2时,.本题考查分式的化简求值,熟练掌握运算法则是解题关键.17、(1)x1=,x2=;(2)x1=2,x2=−.【解析】
把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.【详解】(1)∵△=16+8=24>0,
∴x==,
x1=,x2=;
(2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.18、(1)见解析;(2)见解析.【解析】
(1)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是中心对称图形,连接AC、BD得到对称中心O,再作直线交于,连接,即可.(2)在菱形中,,可知△ACD是等边三角形,过顶点作菱形的边上的高,即找到AD的边中点即可.根据菱形是轴对称图形,连接,交于点,作直线交于,线段即为所求.【详解】解:(1)如图1中,连接,交于点,作直线交于,连接,线段即为所求.(2)如图2中,连接,交于点,作直线交于,线段即为所求.本题考查菱形的性质,三角形的高的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.一、填空题(本大题共5个小题,每小题4分,共20分)19、L【解析】
由前4分钟的进水量求得每分钟的进水量,后8分钟的进水量求得每分钟的出水量.【详解】前4分钟的每分钟的进水量为20÷4=5,每分钟的出水量为5-(30-20)÷8=.故答案为L.从图象中获取信息,首先要明确两坐标轴的实际意义,抓住交点,起点,终点等关键点,明确函数图象的变化趋势,变化快慢的实际意义.20、1.【解析】
众数又是指一组数据中出现次数最多的数据,本题根据众数的定义就可以求解.【详解】本题中数据1出现了2次,出现的次数最多,所以本题的众数是1.故答案为1.众数是指一组数据中出现次数最多的数据.21、x>1【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】∵解不等式x-1≥0得:x≥1,
解不等式4-1x<0得:x>1,
∴不等式组的解集为x>1,
故答案是:x>1.考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22、【解析】
直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=,故答案为:.本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.23、1【解析】分析:根据题目中的式子,可以得到的值,从而可以解答本题.详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.故答案为1.点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.二、解答题(本大题共3个小题,共30分)24、(1)80;60;(2)①甲种服装最多购进75件;②当时,购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,购进甲种服装65件,乙种服装35件.【解析】
(1)设乙服装的进价y元/件,则甲种服装进价为(y+20)元/件,根据题意列方程即可解答;(2)①设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式组解答即可;②首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设乙服装的进价y元/件,则甲种服装进价为元/件,根据题意得:,解得,即甲种服装进价为80元/件,乙种服装进价为60元/件;故答案为80;60;(2)①设计划购买件甲种服装,则购买件乙种服装,根据题意得,解得,甲种服装最多购进75件;②设总利润为元,购进甲种服装件.则,且,当时,,随的增大而增大,故当时,有最大值,即购进甲种服装75件,乙种服装25件;当时,所有进货方案获利相同;当时,,随的增大而减少,故当时,有最大值,即购进甲种服装65件,乙种服装35件.本题考查了分式方程的应用,一次函数的应用,依据题意列出方程是解题的关键.25、(1),(2)【解析】
(1)先提公因式,再利用平方差公式即可,(2)移项,利用因式分解的方法求解即可.【详解】解:(1)(2)因为:所以:所以:所以:或所以:.本题考查因式分解与一元二次方程的解法,熟练掌握因式分解,一元二次方程的解法并选择合适的方法解题是关键.26、(1)4t;(2)①,②;(3)秒或秒或秒.【解析】
(1)先求出AB=50,sinA==,cosA==,进而求出AQ=3t,PQ=4t,即可得出结论;(2)先判断出PN=QM=PQ=4t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版借调员工跨部门沟通协作协议3篇
- 硝酸在物流行业的应用标准
- 港口码头改造基础设施施工合同
- 烟草种植园生物质发电合同
- 婚庆策划维修保修期服务承诺书
- 消防局屋顶防水修缮协议
- 服装纺织计量监督规章
- 居民区给水系统安装合同范本
- 2024年船舶修造吊装劳务承包合同3篇带眉脚
- 2024年物业公司物业服务合同3篇带眉脚
- 减少分娩损伤技术规范
- 水溶液中的离子平衡体系 保护珊瑚礁
- 结婚函调报告表
- -卫生资格-副高-护理学-副高-章节练习-护理学总论-护理管理(单选题)(共500题)
- 电阻率测量报告
- GB/T 33859-2017环境管理水足迹原则、要求与指南
- GB/T 18838.5-2015涂覆涂料前钢材表面处理喷射清理用金属磨料的技术要求第5部分:钢丝切丸
- 《美的集团财务分析报告(2020-2022)【论文】》
- 《秦统一中国》教学反思
- 施耐德变频器atv212说明书
- 国家开放大学《企业集团财务管理》形考任务1-4参考答案
评论
0/150
提交评论