阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】_第1页
阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】_第2页
阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】_第3页
阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】_第4页
阿里市2024-2025学年九上数学开学教学质量检测试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页阿里市2024-2025学年九上数学开学教学质量检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2、(4分)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<23、(4分)如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°4、(4分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%5、(4分)已知平行四边形中,,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是()A. B. C. D.6、(4分)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. B.1 C. D.27、(4分)如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是().A.90° B.120° C.150° D.160°8、(4分)直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.10、(4分)如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为_____.11、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=1.D,E分别为边BC,AC上一点,将△ADE沿着直线AD翻折,点E落在点F处,如果DF⊥BC,△AEF是等边三角形,那么AE=_____.12、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.13、(4分)某学习小组有5人,在一次数学测验中的成绩分别是102,106,100,105,102,则他们成绩的平均数_______________三、解答题(本大题共5个小题,共48分)14、(12分)将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.15、(8分)已知三个实数x,y,z满足,求的值.16、(8分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.17、(10分)正方形中,点是上一点,过点作交射线于点,连结.(1)已知点在线段上.①若,求度数;②求证:.(2)已知正方形边长为,且,请直接写出线段的长.18、(10分)如图,中,且是的中点(1)求证:四边形是平行四边形。(2)求证:四边形是菱形。(3)如果时,求四边形ADBE的面积(4)当度时,四边形是正方形(不证明)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,,是反比例函数图像上的两点,过点作轴,过点作轴,交点为,连接,.若的面积为2,则的面积为______.20、(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.21、(4分)如图,四边形ABCD是平行四边形,添加一个条件:________,可使它成为矩形.22、(4分)将一个矩形纸片按如图所示折叠,若,则的度数是______.23、(4分)若一次函数y=kx+b图象如图,当y>0时,x的取值范围是___________

.二、解答题(本大题共3个小题,共30分)24、(8分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.25、(10分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.(1)甲网店销售的商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售商品吸引顾客,问该店平均每次降价率为多少时,才能使商品的售价为39.2元/件?(2)乙网店销售一批名牌衬衫,平均每天销售20件,每件盈利40元,为了扩大销售,增加盈利减少库存,商场决定采取适当的降价措施,经调查发现,如果每件降价1元,则每天可多售2件.商场若想每天盈利1200元,每件衬衫应降价多少元?26、(12分)先化简,再求值:.其中a=3+.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但不是中心对称图形,故不符合题意;B.不是轴对称图形,是中心对称图形,故不符合题意;C.是轴对称图形,但不是中心对称图形,故不符合题意;D.既是轴对称图形又是中心对称图形,故符合题意.故选D.本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2、C【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.3、B【解析】

据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【详解】,,又,中,,旋转角的度数为.故选:.本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.4、C【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C.5、C【解析】

由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】由∠A=∠B=∠C=90°可判定四边形ABCD为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD为正方形,故选:C.本题考查正方形的判定.正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③先判定四边形是平行四边形,再用1或2进行判定.6、B【解析】

先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.7、C【解析】

根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.【详解】旋转角是∠BAB′=180°-30°=150°.故选C.本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.8、A【解析】

利用待定系数法求函数解析式.【详解】解:∵直线y=kx+b经过点P(-20,5),Q(10,20),

∴,

解得,

所以,直线解析式为.

故选:A.本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】

试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=×10=1.考点:1.勾股定理;2.直角三角形斜边上的中线性质.10、2.1【解析】

连接,利用勾股定理列式求出,判断出四边形是矩形,根据矩形的对角线相等可得,再根据垂线段最短可得时,线段的值最小,然后根据三角形的面积公式列出方程求解即可.【详解】解:如图,连接.,,,,,,,四边形是矩形,,由垂线段最短可得时,线段的值最小,此时,,即,解得.故答案为:2.1.本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出时,线段的值最小是解题的关键,难点在于利用三角形的面积列出方程.11、2.【解析】

由题意可得∠CAD=30°,∠AEF=60°,根据勾股定理可求CD=2,由AC∥DF,则∠AEF=∠EFD=60°,且DE=DF,可得∠DEF=∠DFE=60°,可得∠DEC=60°.根据勾股定理可求EC的长,即可求AE的长.【详解】如图:∵折叠,∴∠EAD=∠FAD,DE=DF,∴∠DFE=∠DEF;∵△AEF是等边三角形,∴∠EAF=∠AEF=60°,∴∠EAD=∠FAD=30°;在Rt△ACD中,AC=6,∠CAD=30°,∴CD=2;∵FD⊥BC,AC⊥BC,∴AC∥DF,∴∠AEF=∠EFD=60°,∴∠FED=60°;∵∠AEF+∠DEC+∠DEF=110°,∴∠DEC=60°;∵在Rt△DEC中,∠DEC=60°,CD=2,∴EC=2;∵AE=AC﹣EC,∴AE=6﹣2=2;故答案为:2.本题考查了翻折问题,等边三角形的性质,勾股定理,求∠CED度数是本题的关键.12、(1,0)【解析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).13、103【解析】

首先根据平均数的计算公式表示出他们的平均成绩,接下来对其进行计算即可.注意:加权平均数与算术平均数的区别.【详解】由题意得,某学习小组成绩的平均数是(102+106+100+105+102)÷5=103,故答案为:103.此题考查平均数,解答本题的关键是熟练掌握平均数的计算公式.三、解答题(本大题共5个小题,共48分)14、(1)四边形DHBG是菱形,理由见解析;(2)1.【解析】

(1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;(2)设DH=BH=x,则AH=8-x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.【详解】解:四边形是菱形.理由如下:∵四边形、是完全相同的矩形,∴,,.在和中,,∴,∴.∵,,∴四边形是平行四边形,,∴,∴,∴是菱形.由,设,则,在中,,即,解得:,即,∴菱形的面积为.本题考查了菱形的判定与性质、矩形的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)利用等角对等边找出DH=BH;(2)利用勾股定理求出菱形的边长.15、4【解析】

求得到,然后求出,分子分母同除以xyz得,即可求解。【详解】解:∵∴∴分子分母同除以xyz得=4本题考查了条件代数式求值问题,关键在于观察条件和所求代数式直接的联系;本题的联系在于倒数的应用和分式基本性质的应用。16、(1)EB=FD,(2)EB=FD,证明见解析;(3)不变,等于60°.【解析】

(1)EB=FD,利用正方形的性质、等边三角形的性质和全等三角形的证明方法可证明△AFD≌△ABE,由全等三角形的性质即可得到EB=FD;

(2)当四边形ABCD为矩形时,EB和FD仍旧相等,证明的思路同(1);

(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD不发生变化,是一定值,为60°.【详解】解:(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.17、(1)①;②见解析;(2)的长为或【解析】

(1)①根据正方形性质,求出;根据等腰三角形性质,求出的度数,即可求得.②根据正方形对称性得到;根据四边形内角和证出;利用等角对等边即可证出.(2)分情况讨论:①当点F在线段BC上时;②当点F在线段CB延长线上时;根据正方形的对称性,证出;再根据等腰三角形的性质,求出线段NC,BN;利用勾股定理,求出BE、BD,进而求出DE.【详解】解:(1)①为正方形,.又,.②证明:正方形关于对称,,.又,又,,.(2)①当点F在线段BC上时,过E作MN⊥BC,垂足为N,交AD于M,如图1所示:∴N是CF的中点,∴BF=1,∴CF=1又∵四边形CDMN是矩形∴为等腰直角三角形∴②当点F在线段CB延长线上时,如图2所示:过点E作MN⊥BC,垂足为N,交AD于M∵正方形ABCD关于BD对称又∵又∴FC=3∴∴∴,综上所述,的长为或本题考查了三角形全等、等腰三角形的性质、三线合一、勾股定理等知识点;难点在(2),注意分情况讨论;本题难度较大,属于中考压轴题.18、(1)见解析;(2)见解析;(3)24;(4)45.【解析】

(1)推出CE=BD,CE∥BD,可证四边形是平行四边形;(2)求出BDF=AE,BD∥AE,得出平行四边形ADBE,根据DE∥BC,∠ABC=90°推出DE⊥AB,根据菱形的判定推出即可;(3)由四边形BDEC是平行四边形,可得DE=BC=6,然后根据菱形的面积公式求解即可;(4)当45度时,可证△ABC是等腰直角三角形,从而AB=BC=DE,可证四边形是正方形.【详解】(1)证明:∵E是AC的中点,∴CE=AE=AC,∵DB=AC,∵BD=CE,∵BD∥AC,∴BD∥CE,∴四边形BDEC是平行四边形,∴DE∥BC.(2)证明:∵DE∥BC,∠ABC=90°,∴DE⊥AB,∵AE=AC,DB=AC,BD∥AC,∴BD=AE,BD∥AE,∴四边形ADBE是平行四边形,∴平行四边形ADBE是菱形;(3)∵四边形BDEC是平行四边形,∴DE=BC=6.∵四边形ADBE是菱形,∴四边形ADBE面积=;(4)当45度时,四边形是正方形.∵45,∴△ABC是等腰直角三角形,∴AB=BC=DE,∵四边形ADBE是菱形,∴四边形是正方形.本题考查了平行四边形的性质和判定,菱形的判定与性质,以及正方形的判定等知识点,注意:有一组对边平行且相等的四边形是平行四边形,对角线互相垂直的平行四边形是菱形,有一个角是直角的菱形是正方形.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

设A(m,),B(n,),根据题意可得AP=,且A点到y轴的距离为m,依据已知△AOP的面积为2,得到m和n的关系式n=3m,计算△ABP面积=AP×BP,即可得到结果.【详解】解:设A(m,),B(n,),根据题意可得AP=,且A点到y轴的距离为m,则AP×m=()×m=2,整理得,所以n=3m,B点坐标可以表示为(3m,)△ABP面积=AP×BP=()×(3m−m)=1.故答案为1.本题主要考查了反比例函数图象上点的坐标特征,解决此类型问题,一般设某个点坐标为(x,),然后用横纵坐标的绝对值表示线段的长度.20、x1=﹣1,x1=﹣1.【解析】

利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.【详解】解:由“关联数”定义得一次函数为y=x+m﹣1,又∵此一次函数为正比例函数,∴m﹣1=0,解得:m=1,∴关于x的方程为x1+3x+1=0,因式分解得:(x+1)(x+1)=0,∴x+1=0或x+1=0,∴x1=﹣1,x1=﹣1;故答案为x1=﹣1,x1=﹣1.本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.21、∠ABC=90°(或AC=BD等)【解析】本题是一道开放题,只要掌握矩形的判定方法即可.由有一个角是直角的平行四边形是矩形.想到添加∠ABC=90°;由对角线相等的平行四边形是矩形.想到添加AC=BD.22、40°【解析】

依据平行线的性质,即可得到,,进而得出,再根据进行计算即可.【详解】解:如图所示,,,,由折叠可得,,,故答案为:.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.23、x<-1【解析】

由图象可知一次函数y=kx+b的图象经过点(-1,0)、(0,-2).∴,解得,∴该一次函数的解析式为y=−2x-2,∵−2<0,∴当y>0时,x的取值范围是:x<-1.故答案为x<-1.二、解答题(本大题共3个小题,共30分)24、A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).【解析】

(1)已知游乐园的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论