北京市西城区第三十九中2025届高二上数学期末监测模拟试题含解析_第1页
北京市西城区第三十九中2025届高二上数学期末监测模拟试题含解析_第2页
北京市西城区第三十九中2025届高二上数学期末监测模拟试题含解析_第3页
北京市西城区第三十九中2025届高二上数学期末监测模拟试题含解析_第4页
北京市西城区第三十九中2025届高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区第三十九中2025届高二上数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三维数组,,且,则实数()A.-2 B.-9C. D.22.给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题3.若双曲线与椭圆有公共焦点,且离心率,则双曲线的标准方程为()A. B.C. D.4.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.5.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)6.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.187.在空间直角坐标系中,,,平面的一个法向量为,则平面与平面夹角的正弦值为()A. B.C. D.8.已知向量,,且,则实数等于()A1 B.2C. D.9.在平面上有一系列点,对每个正整数,点位于函数的图象上,以点为圆心的与轴都相切,且与彼此外切.若,且,,的前项之和为,则()A. B.C. D.10.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.811.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.12.若点是函数图象上的动点(其中的自然对数的底数),则到直线的距离最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列中,前n项和记作,若,则______14.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难人微”.事实上,很多代数问题可以转化为几何问题加以解决,如:与相关的代数问题可以转化为点与点之间距离的几何问题.结合上述观点,可得方程的解是__________.15.函数的最小值为______.16.已知空间直角坐标系中,点,,若,与同向,则向量的坐标为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱锥S-ABCD的侧面积;(2)求平面SCD与平面SAB的夹角的余弦值.18.(12分)已知椭圆经过点,(1)求椭圆的方程;(2)已知直线的倾斜角为锐角,与圆相切,与椭圆交于、两点,且的面积为,求直线的方程19.(12分)已知圆的圆心在直线上,且圆经过点与点.(1)求圆的方程;(2)过点作圆的切线,求切线所在的直线的方程.20.(12分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.21.(12分)已知公差不为0的等差数列,前项和为,首项为,且成等比数列.(1)求和;(2)设,记,求.22.(10分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由空间向量的数量积运算即可求解【详解】∵,,,,,,且,∴,解得故选:D2、D【解析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,,所以说法不正确;D选项:“在中,若,则是锐角三角形”是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题“若,则”的否命题是“若,则”,所以A选项不正确;双曲线的离心率大于,即,解得,则“”是“双曲线的离心率大于”的充分不必要条件,所以B选项不正确;命题“,”的否定是“,”,所以C选项不正确;命题“在中,若,则是锐角三角形”,在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.3、A【解析】首先求出椭圆的焦点坐标,然后根据可得双曲线方程中的的值,然后可得答案.【详解】椭圆焦点坐标为所以双曲线的焦点在轴上,,因为,所以,所以双曲线的标准方程为故选:A4、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B5、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.6、C【解析】先求出公差,再利用公式可求总重量.【详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.7、A【解析】根据给定条件求出平面的法向量,再借助空间向量夹角公式即可计算作答.【详解】设平面的法向量为,则,令,得,令平面与平面夹角为,则,,所以平面与平面夹角的正弦值为.故选:A8、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C9、C【解析】根据两圆的几何关系及其圆心在函数的图象上,即可得到递推关系式,通过构造等差数列求得的通项公式,得出,最后利用裂项相消,求出数列前项和,即可求出.详解】由与彼此外切,则,,,又∵,∴,故为等差数列且,,则,,则,即,故答案选:.10、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.11、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.12、A【解析】设,,设与平行且与相切的直线与切于,由导数的几何意义可求出点的坐标,则到直线的距离最小值为点到直线的距离,再求解即可.【详解】解:设,,设与平行且与相切的直线与切于所以所以则到直线的距离为,即到直线的距离最小值为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:14、【解析】根据题意,列方程计算即可【详解】因为,所以,可转化为点到点和点的距离之和为,所以点在椭圆上,则,解得.故答案为:15、1【解析】由解析式知定义域为,讨论、、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,∴当时,,此时单调递减;当时,,有,此时单调递减;当时,,有,此时单调递增;又在各分段的界点处连续,∴综上有:时,单调递减,时,单调递增;∴故答案为:1.16、【解析】求出坐标,根据给条件表示出坐标,利用向量模的坐标表示计算作答.【详解】因,,则,因与同向,则设,因此,,于是得,解得,则,所以向量的坐标为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据垂直关系依次求解每个侧面三角形边长和面积即可得解;(2)建立空间直角坐标系,利用向量法求解.小问1详解】由题可得:,则,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交线,所以BC⊥平面SAB,BC⊥BS,,所以四棱锥的侧面积【小问2详解】以A为原点,建立空间直角坐标系如图所示:设平面SCD的法向量,,取所以取为平面SAB的的法向量所以平面SCD与平面SAB的夹角的余弦值.18、(1)(2)【解析】(1)将点M、N的坐标代入椭圆方程计算,求出a、b的值即可;(2)设l的方程为:,,根据直线与圆的位置关系可得,直线方程联立椭圆方程并消去y,利用韦达定理表示出,根据弦长公式求出,进而列出关于k的方程,解之即可.【小问1详解】椭圆经过点,则,解得,【小问2详解】设l的方程为:与圆相切设点,∴(则Δ>0,,,,,,,,,故,19、(1);(2)或.【解析】(1)求出线段中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求(2)当切线斜率不存在时,可知切线方程为.当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.试题解析:(1)线段的中点为,∵,∴线段的垂直平分线为,与联立得交点,∴.∴圆的方程为.(2)当切线斜率不存在时,切线方程为.当切线斜率存在时,设切线方程为,即,则到此直线的距离为,解得,∴切线方程为.故满足条件的切线方程为或.【点睛】本题考查圆的方程的求法,圆的切线,中点弦等问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解20、(1)的通项公式为,的通项公式为;(2).【解析】(1)用基本量表示题干中的量,联立求解即可;(2)由,,用乘公比错位相减法求和即可.【详解】(1)设等差数列的公差为d,等比数列的公比为q.由已知,得,而,所以,解得,所以.由得.①,由得.②,联立①②解得,所以.故的通项公式为,的通项公式为.(2)设数列的前n项和为,由,得.,,上述两式相减,得,所以,即.21、(1)(2)【解析】(1)由题意解得等差数列的公差,代入公式即可求得和;(2)把n分为奇数和偶数两类,分别去数列的前n项和.【小问1详解】设等差数列公差为,由题有,即,解之得或0,又,所以,所以.【小问2详解】,当为正奇数,,当为正偶数,,所以22、(1)证明见解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论