版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市顺义牛栏山一中2025届高一上数学期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在上最大值与最小值之和是()A. B.C. D.2.,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.下列四组函数中,表示同一函数的是()A. B.C D.4.已知的定义域为,则函数的定义域为A. B.C. D.5.已知函数,,则函数的零点个数不可能是()A.2个 B.3个C.4个 D.5个6.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.87.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.8.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.9.已知集合,,若,则的值为A.4 B.7C.9 D.1010.已知函数,将的图象上所有点沿x轴平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,且函数的图象关于y轴对称,则的最小值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算:________.12.在中,,则等于______13.已知正实数,,且,若,则的值域为__________14.已知过点的直线与轴,轴在第二象限围成的三角形的面积为3,则直线的方程为__________15.已知点,直线与线段相交,则实数的取值范围是____;16.设函数,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元设公司一年内共生产该款手机万部且并全部销售完,每万部的收入为万元,且写出年利润万元关于年产量(万部)的函数关系式;当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润18.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域19.已知函数满足下列3个条件:①函数的周期为;②是函数的对称轴;③.(1)请任选其中二个条件,并求出此时函数的解析式;(2)若,求函数的最值.20.已知函数(常数).(1)当时,用定义证明在区间上是严格增函数;(2)根据的不同取值,判断函数的奇偶性,并说明理由;(3)令,设在区间上的最小值为,求的表达式.21.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.2、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B3、A【解析】求得每个选项中函数的定义域,结合对应关系是否相等,即可容易判断.【详解】对于A:,,定义域均为,两个函数的定义域和对应关系都相同,表示同一函数;对于B:的定义域为R,的定义域为,两个函数的定义域不同,不是同一函数;对于:的定义域为,的定义域为,两个函数的定义域不同,不是同一函数;对于D:的定义域为,的定义域为或,两个函数的定义域不同,不是同一函数.故选:A.【点睛】本题考查函数相等的判断,属简单题;注意函数定义域的求解.4、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域5、B【解析】由可得或,然后画出的图象,结合图象可分析出答案.【详解】由可得或的图象如下:所以当时,,此时无零点,有2个零点,所以的零点个数为2;当时,,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时有4个零点,有2个零点,所以的零点个数为6;当时,,此时有3个零点,有2个零点,所以的零点个数为5;当且时,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时的零点个数为2;当时,,此时有2个零点,有3个零点,所以的零点个数为5;当时,,此时有2个零点,有4个零点,所以的零点个数为6;当时,,此时有2个零点,有2个零点,所以零点个数为4;当时,,此时有2个零点,无零点,所以的零点个数为2;综上:的零点个数可以为2、4、5、6,故选:B6、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.7、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化8、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:9、A【解析】可知,或,所以.故选A考点:交集的应用10、B【解析】先将解析式化简后,由三角函数图象变换得到的解析式后求解.【详解】若向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,由题意得,的最小值为;若向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,同理得的最小值为,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题12、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.13、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.14、【解析】设直线l的方程是y=k(x-3)+4,它在x轴、y轴上的截距分别是﹣+3,-3k+4,且﹣+3<0,-3k+4>0由已知,得(-3k+4)(﹣3)=6,解得k1=或k2=所以直线l的方程为:故答案为15、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力16、6【解析】根据分段函数的定义,分别求出和,计算即可求出结果.【详解】由题知,,,.故答案为:6.【点睛】本题考查了分段函数求函数值的问题,考查了对数的运算.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)当时,y取得最大值57600万元【解析】根据题意,即可求解利润关于产量的关系式为,化简即可求出;由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润【详解】(1)由题意,可得利润关于年产量的函数关系式为,.由可得,当且仅当,即时取等号,所以当时,y取得最大值57600万元【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润关于年产量的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题18、(1);(2);(3).【解析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由得,从而可得的取值范围.【详解】(1),所以最小正周期(2)由,得,所以函数的单调递增区间是.(3)由得,则,所以19、(1)答案见解析,;(2)最大值;最小值.【解析】(1)由①知,由②知,由③知,结合即可求出的解析式.(2)由可得,进而可求出函数最值.【详解】解:(1)选①②,则,解得,因为,所以,即;选①③,,由得,因,所以,即;选②③,,由得,因为,所以,即.(2)由题意得,因为,所以.所以当即时,有最大值,所以当即时,有最小值.【点睛】本题考查了三角函数的周期,考查了三角函数的对称轴,考查了三角函数的值域,考查了三角函数表达式的求解,意在考查学生对于三角函数知识的综合应用.20、(1)证明见解析(2)当时,奇函数;当时,非奇非偶函数,理由见解析.(3)【解析】(1)当时,得到函数,利用函数单调性的定义,即可作出证明;(2)分和两种情况,结合函数的奇偶性的定义,即可得出结论.(3)根据正负性,结合具体类型的函数的单调性,进行分类讨论可以求出的表达式;【小问1详解】当时,函数,设且,则,因为,可得又由,可得,所以所以,即,所以函数是上是严格增函数.【小问2详解】由函数的定义域为关于原点对称,当时,函数,可得,此时函数为奇函数;当时,,此时且,所以时,函数为非奇非偶函数.【小问3详解】,当时,,函数在区间的最小值为;当时,函数的对称轴为:.若,在区间的最小值为;若,在区间的最小值为;若,在区间的最小值为;当时,,在区间的最小值为.综上所述:;21、(1);(2).【解析】(1)因为甲、乙、丙三位同学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度餐饮厨房能源消耗分析与节能减排承包合同3篇
- 2025年度区块链技术研究人员保密协议及项目合作条款3篇
- 2025年度时尚服饰品牌代理供货合作协议4篇
- 2025年度二零二五年度生态旅游区场摊位租赁管理协议4篇
- 2025年度企业年会策划与演出服务合同4篇
- 2025年度服装服饰货款抵押销售合同范本4篇
- 2024石材石材石材运输保险服务合作协议3篇
- 2025年度柴油发动机技术培训合同4篇
- 2025年度体育赛事场地冠名权及推广合作合同4篇
- 二零二五年度防盗门行业展会赞助合作合同3篇
- 2024版《53天天练单元归类复习》3年级语文下册(统编RJ)附参考答案
- 2025企业年会盛典
- 215kWh工商业液冷储能电池一体柜用户手册
- 场地平整施工组织设计-(3)模板
- 交通设施设备供货及技术支持方案
- 美容美发店火灾应急预案
- 餐车移动食材配送方案
- 项目工程师年终总结课件
- 一年级口算练习题大全(可直接打印A4)
- 电动车棚消防应急预案
- 人力资源战略规划地图
评论
0/150
提交评论