下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量与“四心”在平面向量的应用中,用平面向量解决平面几何问题时,首先将几何问题中的几何元素和几何关系用向量表示,然后选择适当的基底向量,将相关向量表示为基向量的线性组合,把问题转化为基向量的运算问题,最后将运算的结果再还原为几何关系.应用向量相关知识,可以巧妙地解决三角形四心所具备的一些特定的性质.重心问题已知O是△ABC所在平面上的一点,若eq\o(PO,\s\up6(→))=eq\f(1,3)(eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→)))(其中P为平面上任意一点),则点O是△ABC的()A.外心B.内心C.重心D.垂心C解析:由已知得3eq\o(PO,\s\up6(→))=eq\o(OA,\s\up6(→))-eq\o(OP,\s\up6(→))+eq\o(OB,\s\up6(→))-eq\o(OP,\s\up6(→))+eq\o(OC,\s\up6(→))-eq\o(OP,\s\up6(→)),所以3eq\o(PO,\s\up6(→))+3eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→)),即eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,所以点O是△ABC的重心.如图,△ABC的重心为G,O为坐标原点,eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,eq\o(OC,\s\up6(→))=c,试用a,b,c表示eq\o(OG,\s\up6(→)).解:设AG交BC于点M,则M是BC的中点.因为eq\b\lc\{\rc\(\a\vs4\al\co1(a-\o(OG,\s\up6(→))=\o(GA,\s\up6(→)),,b-\o(OG,\s\up6(→))=\o(GB,\s\up6(→)),,c-\o(OG,\s\up6(→))=\o(GC,\s\up6(→)),))所以a+b+c-3eq\o(OG,\s\up6(→))=eq\o(GA,\s\up6(→))+eq\o(GB,\s\up6(→))+eq\o(GC,\s\up6(→)).而eq\o(GA,\s\up6(→))+eq\o(GB,\s\up6(→))+eq\o(GC,\s\up6(→))=0,所以a+b+c-3eq\o(OG,\s\up6(→))=0,所以eq\o(OG,\s\up6(→))=eq\f(a+b+c,3).垂心问题已知点O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|cosB)+\f(\o(AC,\s\up6(→)),|\o(AC,\s\up6(→))|cosC))),λ∈[0,+∞),则动点P的轨迹一定通过△ABC的()A.重心B.垂心C.外心D.内心B解析:由已知得eq\o(AP,\s\up6(→))=λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|cosB)+\f(\o(AC,\s\up6(→)),|\o(AC,\s\up6(→))|cosC))),所以eq\o(AP,\s\up6(→))·eq\o(BC,\s\up6(→))=λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→))·\o(BC,\s\up6(→)),|\o(AB,\s\up6(→))|cosB)+\f(\o(AC,\s\up6(→))·\o(BC,\s\up6(→)),|\o(AC,\s\up6(→))|cosC)))=λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(|\o(AB,\s\up6(→))||\o(BC,\s\up6(→))|cosπ-B,|\o(AB,\s\up6(→))|cosB)+\f(|\o(AC,\s\up6(→))||\o(BC,\s\up6(→))|cosC,|\o(AC,\s\up6(→))|cosC)))=λ(-|eq\o(BC,\s\up6(→))|+|eq\o(BC,\s\up6(→))|)=0,所以eq\o(AP,\s\up6(→))⊥eq\o(BC,\s\up6(→)),即AP⊥BC,所以动点P的轨迹通过△ABC的垂心.已知点O为△ABC所在平面内一点,且eq\o(OA,\s\up6(→))2+eq\o(BC,\s\up6(→))2=eq\o(OB,\s\up6(→))2+eq\o(CA,\s\up6(→))2=eq\o(OC,\s\up6(→))2+eq\o(AB,\s\up6(→))2,则点O一定为△ABC的()A.外心B.内心C.重心D.垂心D解析:因为eq\o(OA,\s\up6(→))2+eq\o(BC,\s\up6(→))2=eq\o(OB,\s\up6(→))2+eq\o(CA,\s\up6(→))2,所以eq\o(OA,\s\up6(→))2-eq\o(OB,\s\up6(→))2=eq\o(CA,\s\up6(→))2-eq\o(BC,\s\up6(→))2,所以(eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→)))·(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→)))=(eq\o(CA,\s\up6(→))+eq\o(BC,\s\up6(→)))·(eq\o(CA,\s\up6(→))-eq\o(BC,\s\up6(→))),所以eq\o(BA,\s\up6(→))·(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→)))=eq\o(BA,\s\up6(→))·(eq\o(CA,\s\up6(→))-eq\o(BC,\s\up6(→))),所以eq\o(BA,\s\up6(→))·(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))-eq\o(CA,\s\up6(→))+eq\o(BC,\s\up6(→)))=0,所以eq\o(BA,\s\up6(→))·(eq\o(OA,\s\up6(→))+eq\o(AC,\s\up6(→))+eq\o(OC,\s\up6(→)))=0,所以eq\o(BA,\s\up6(→))·eq\o(OC,\s\up6(→))=0,所以eq\o(BA,\s\up6(→))⊥eq\o(OC,\s\up6(→)).同理可得eq\o(CA,\s\up6(→))⊥eq\o(OB,\s\up6(→)),eq\o(CB,\s\up6(→))⊥eq\o(OA,\s\up6(→)).所以O为△ABC的垂心.故选D.外心问题已知点O是△ABC所在平面上的一点.若(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→)))·eq\o(AB,\s\up6(→))=(eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→)))·eq\o(BC,\s\up6(→))=(eq\o(OC,\s\up6(→))+eq\o(OA,\s\up6(→)))·eq\o(CA,\s\up6(→))=0,则点O是△ABC的()A.外心B.内心C.重心D.垂心A解析:由已知得(eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→)))·(eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→)))=(eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→)))·(eq\o(OC,\s\up6(→))-eq\o(OB,\s\up6(→)))=(eq\o(OC,\s\up6(→))+eq\o(OA,\s\up6(→)))·(eq\o(OA,\s\up6(→))-eq\o(OC,\s\up6(→)))=0⇔eq\o(OB,\s\up6(→))2-eq\o(OA,\s\up6(→))2=eq\o(OC,\s\up6(→))2-eq\o(OB,\s\up6(→))2=eq\o(OA,\s\up6(→))2-eq\o(OC,\s\up6(→))2=0⇔|eq\o(OA,\s\up6(→))|=|eq\o(OB,\s\up6(→))|=|eq\o(OC,\s\up6(→))|.所以点O是△ABC的外心.在△ABC中,AB=AC,点D是AB的中点,E为△ACD的重心,点F为△ABC的外心.求证:EF⊥CD.证明:建立如图所示的坐标系,设A(0,b),B(-a,0),C(a,0),则Deq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,2),\f(b,2))),eq\o(CD,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,2)a,\f(b,2))),易知△ABC的外心F在y轴上,设为F(0,y).由|eq\o(AF,\s\up6(→))|=|eq\o(CF,\s\up6(→))|可得(y-b)2=(-a)2+y2,所以y=eq\f(b2-a2,2b),即Feq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(b2-a2,2b))).连接AE,CE,DE,又由重心公式,得eq\o(EA,\s\up6(→))+eq\o(ED,\s\up6(→))+eq\o(EC,\s\up6(→))=0,则Eeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a,6),\f(b,2))),所以eq\o(EF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,6),-\f(a2,2b))),所以eq\o(CD,\s\up6(→))·eq\o(EF,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,2)a))×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a,6)))+eq\f(b,2)×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(a2,2b)))=0,所以eq\o(CD,\s\up6(→))⊥eq\o(EF,\s\up6(→)),即EF⊥CD.内心问题已知点O是△ABC所在平面上的一点,若eq\o(PO,\s\up6(→))=eq\f(a\o(PA,\s\up6(→))+b\o(PB,\s\up6(→))+c\o(PC,\s\up6(→)),a+b+c)(其中P是△ABC所在平面内任意一点),则点O是△ABC的()A.外心B.内心C.重心D.垂心B解析:因为eq\o(PO,\s\up6(→))=eq\f(a\o(PA,\s\up6(→))+b\o(PB,\s\up6(→))+c\o(PC,\s\up6(→)),a+b+c),所以(a+b+c)eq\o(PO,\s\up6(→))=aeq\o(PA,\s\up6(→))+beq\o(PB,\s\up6(→))+ceq\o(PC,\s\up6(→)),即aeq\o(PO,\s\up6(→))+bPO+ceq\o(PO,\s\up6(→))=aeq\o(PA,\s\up6(→))+beq\o(PB,\s\up6(→))+ceq\o(PC,\s\up6(→)),移项并整理可得a(eq\o(PA,\s\up6(→))-eq\o(PO,\s\up6(→)))+b(eq\o(PB,\s\up6(→))-eq\o(PO,\s\up6(→)))+c(eq\o(PC,\s\up6(→))-eq\o(PO,\s\up6(→)))=0,则aeq\o(OA,\s\up6(→))+beq\o(OB,\s\up6(→))+ceq\o(OC,\s\up6(→))=0,所以点O是△ABC的内心.已知点O是平面上一定点,A,B,C是平面上不共线的三个点,满足eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\o(AB,\s\up6(→)),|\o(AB,\s\up6(→))|)+\f(\o(AC,\s\up6(→)),|\o(AC,\s\up6(→))|))),λ∈[0,+∞),则点P的轨迹一定通过△ABC的________.内心解析:如图所示,eq\o(OP,\s\up6(→))=eq\o(OA,\s\up6(→))+eq\o(AP,\s\up6(→)),由已知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水利水电工程分包
- 员工培训合同范本
- 正规学校保证书格式
- 个人借款合同利率的制定方式解释详解
- 育苗灌溉合作方案
- 微波炉预售合同补充协议
- 英文版购销合同学习
- 水果订购合同示例
- 专业招标企业货物运输合作伙伴
- 积分商城商品购买合同
- 2023-2024年中考语文三年真题分类汇编(全国版)作文 试卷(含答案解析)
- 台球厅运营方案策划(2篇)
- 营养专科护士进修汇报
- 2024-2030年中国测试分选机行业市场发展分析及竞争格局与投资发展研究报告
- 《煤矿重大事故隐患判定标准》解读培训课件2024(中国煤矿安全技术培训中心)
- 学校厨房设备投标方案(技术方案)
- 课本剧哈姆雷特剧本
- 2023《住院患者身体约束的护理》团体标准解读PPT
- 跨国化妆品企业在中国本土化战略研究分析-以雅诗兰黛公司为例 工商管理专业
- 2024年度家庭医生签约服务培训课件
- 医院陪护服务投标方案(技术方案)
评论
0/150
提交评论