版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年福建省普通高中高三下学期开学模拟考试数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,点满足,则等于()A.10 B.9 C.8 D.72.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.73.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020 B.4038 C.4039 D.40404.已知数列的前项和为,且,,则()A. B. C. D.5.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.6.在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是()A.点F的轨迹是一条线段 B.与BE是异面直线C.与不可能平行 D.三棱锥的体积为定值7.已知,函数,若函数恰有三个零点,则()A. B.C. D.8.函数(,,)的部分图象如图所示,则的值分别为()A.2,0 B.2, C.2, D.2,9.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.10.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位11.已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是()A. B.C. D.12.一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,满足,,,则向量在的夹角为______.14.已知三棱锥的四个顶点都在球的球面上,,则球的表面积为__________.15.在平面直角坐标系中,已知圆,圆.直线与圆相切,且与圆相交于,两点,则弦的长为_________16.已知向量,若向量与共线,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1.(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由.18.(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.19.(12分)在直角坐标系中,直线的参数方程是为参数),曲线的参数方程是为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知射线与曲线交于两点,射线与直线交于点,若的面积为1,求的值和弦长.20.(12分)已知f(x)=|x+3|-|x-2|(1)求函数f(x)的最大值m;(2)正数a,b,c满足a+2b+3c=m,求证:21.(12分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.22.(10分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.2.C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.3.D【解析】
计算,代入等式,根据化简得到答案.【详解】,,,故,,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.4.C【解析】
根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.5.D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.6.C【解析】
分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、、,,平面,平面,平面.同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点.正确.对于,平面平面,和平面相交,与是异面直线,正确.对于,由知,平面平面,与不可能平行,错误.对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:.【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.7.C【解析】
当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.【详解】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.8.D【解析】
由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【详解】由函数图象可知:,函数的图象过点,,则故选【点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果9.B【解析】
运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.10.D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D11.A【解析】
首先根据为上的减函数,列出不等式组,求得,所以当最小时,,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点.画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为.故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.12.C【解析】
根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然后根据几何体的结构求出其体积.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.14.【解析】
如图所示,将三棱锥补成长方体,球为长方体的外接球,长、宽、高分别为,计算得到,得到答案.【详解】如图所示,将三棱锥补成长方体,球为长方体的外接球,长、宽、高分别为,则,所以,所以球的半径,则球的表面积为.故答案为:.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力,将三棱锥补成长方体是解题的关键.15.【解析】
利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为.【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题.16.【解析】
计算得到,根据向量平行计算得到答案.【详解】由题意可得,因为与共线,所以有,即,解得.故答案为:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)是为定值,的横坐标为定值【解析】
(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,,.由消去并整理得,∴,.直线的方程为:,直线的方程为:.联系方程,解得,又因为.所以.所以的横坐标为定值.【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.18.(1);(2)存在,【解析】
(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点.【详解】(1)由题可得∴,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,,∴,,∴若以为直径的圆经过点,则,∴,化简得,∴,解得或因为与不重合,所以舍.所以直线的方程为.【点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.19.(1),;(2).【解析】
(1)先把直线和曲线的参数方程化成普通方程,再化成极坐标方程;(2)联立极坐标方程,根据极径的几何意义可得,再由面积可解得极角,从而可得.【详解】(1)直线的参数方程是为参数),消去参数得直角坐标方程为:.转换为极坐标方程为:,即.曲线的参数方程是(为参数),转换为直角坐标方程为:,化为一般式得化为极坐标方程为:.
(2)由于,得,.所以,所以,由于,所以,所以.【点睛】本题主要考查参数方程与普通方程的互化、直角坐标方程与极坐标方程的互化,熟记公式即可,属于常考题型.20.(1)(2)见解析【解析】
(1)利用绝对值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式证得不等式成立;方法二,利用“的代换”的方法,结合基本不等式证得不等式成立.【详解】(1)由绝对值不等式性质得当且仅当即时等号成立,所以(2)由(1)得.法1:由柯西不等式得当且仅当时等号成立,即,所以.法2:由得,,当且仅当时“=”成立.【点睛】本小题主要考查绝对值三角不等式,考查利用柯西不等式、基本不等式证明不等式,属于中档题.21.(1);(2).【解析】
(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得到答案.(2),是方程的两根,故,化简得到,设函数,讨论范围,计算最值得到答案.【详解】(1)由题可知有两个不相等的实根,即:有两个不相等实根,令,,,,;,,故在上单增,在上单减,∴.又,时,;时,,∴,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村住宅交易协议模版
- 集中采购合同的跨国运输管理
- 摄影与设计服务合同样本
- 商家承诺天猫保证书
- 解除劳动合同协议书模板
- 房屋买卖合同担保人权益如何维护
- 物业保洁协议格式
- 建筑基坑挖掘分包合同范本
- 教师与学校之间的聘用协议
- 云端服务终止方案合同
- 税务会计岗位招聘面试题与参考回答(某世界500强集团)2024年
- 2024年中国反病毒邮件网关市场调查研究报告
- 部编版道德与法治三年级上册第8课《安全记心上》精美课件
- 2024安徽省劳动合同书
- 2025年高考物理复习策略
- 哮喘中医分型
- 《数字媒体技术导论》全套教学课件
- 海南乐东黎族自治县事业单位定向公开招聘驻县部队随军家属工作人员5人(第1号)(高频重点复习提升训练)共500题附带答案详解
- 行政执法证专业法律知识考试题库含答案(公路路政)
- 2024-2030年中国语言服务行业发展规划与未来前景展望研究报告
- 2024-2030年白玉蜗牛养殖行业市场发展现状及发展前景与投资机会研究报告
评论
0/150
提交评论