版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共4页2025届宁夏石嘴山市名校数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若,两点都在直线上,则与的大小关系是()A. B. C. D.无法确定2、(4分)到△ABC的三条边距离相等的点是△ABC的().A.三条中线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条角平分线的交点3、(4分)如图,在中,下列结论错误的是()A. B. C. D.4、(4分)正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.50,EF⊥AB,垂足为F,则EF的长()A.1 B. C. D.5、(4分)下列计算正确的是A. B. C. D.6、(4分)一次函数y=-2x-1的图象不经过()象限A.第一 B.第二 C.第三 D.第四7、(4分)如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.808、(4分)如图,矩形ABCD中,AB=6,BC=8,E是AD边上一点,连接CE,将△CDE沿CE翻折,点D的对应点是F,连接AF,当△AEF是直角三角形时,AF的值是()A.4 B.2 C.4,2 D.4,5,2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是__________.10、(4分)分解因式:____.11、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E.F分别是AO、AD的中点,若AC=8,则EF=___.12、(4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_______.13、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,CE//BD,DE//AC.若AD=23,AB=2,则四边形OCED的面积为___三、解答题(本大题共5个小题,共48分)14、(12分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?15、(8分)某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?16、(8分)我们定义:在四边形中,一条边上的两个角称为邻角.如果一条边上的邻角相等,且这条边对边上的邻角也相等,则把这样的四边形叫做“完美四边形”.初步运用:在“平行四边形、矩形和菱形”这三种特殊的四边形中,一定是“完美四边形”的是______;问题探究:在完美四边形中,,,,,求该完美四边形的周长与面积;17、(10分)如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.18、(10分)在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.(1)如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG=S正方形ABCD;(2)如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.20、(4分)已知=,=,那么=_____(用向量、的式子表示)21、(4分)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.22、(4分)如图,正方形ABCD是出四个全等的角三角形围成的,若,,则EF的长为________。23、(4分)若,则xy的值等于_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.25、(10分)一次函数图象经过(3,8)和(5,12)两点,求一次函数解析式.26、(12分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.求证:四边形ACEF是平行四边形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据一次函数的性质进行判断即可.【详解】解:∵直线的K=2>0,∴y随x的增大而增大,∵-4<-2,∴.故选C.本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.2、D【解析】
根据角平分线的性质求解即可.【详解】到△ABC的三条边距离相等的点是△ABC的三条角平分线的交点故答案为:D.本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键.3、D【解析】
根据平行四边形的对边平行和平行线的性质即可一一判断.【详解】∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.
∵四边形ABCD是平行四边形,
∴AB∥BC,
∠1=∠2,故A正确,
故只有∠1=∠3错误,
故选:D.此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.4、B【解析】
根据题意连接AC,与BD的交点为O.再根据,,可得AE是的角平分线,所以可得OE=EF,BE=,所以OB=,因此可计算出EF的长.【详解】解:根据题意连接AC,与BD的交点为O.四边形ABCD为正方形AE是的角平分线故选B.本题主要考查正方形的性质,关键在于根据题意列出方程,这是考试的常考点,应当熟练掌握.5、A【解析】A.,故正确;B.,故不正确;C.,故不正确;D.,故不正确;故选A.6、A【解析】
先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】∵一次函数y=−2x−1中,k=−2<0,b=−1<0,∴此函数的图象经过二、三、四象限,故选A.此题考查一次函数的性质,解题关键在于判断出k、b的符号7、C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.8、C【解析】
当∠AFE=90°时,由∠AFE=∠EFC=90°可知点F在AC上,先依据勾股定理求得AC的长,然后结合条件FC=DC=3,可求得AF的长;当∠AFE=90°,可证明四边形CDEF为正方形,则EF=3,AE=4,最后,依据勾股定理求解即可.【详解】如下图所示:当点F在AC上时.∵AB=3,BC=8,∴AC=1.由翻折的性质可知:∠EFC=∠D=90°,CF=CD=3,∴AF=4.如下图所示:∵∠FED=∠D=∠DCF=90°,∴四边形CDEF为矩形.由翻折的性质可知EF=DE,∴四边形CDEF为正方形.∴DE=EF=3.∴AE=4.∴AF===4.综上所述,AF的长为4或4.故选:C.本题主要考查的是翻折的性质,依据题意画出符合题意的图形是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.【详解】根据平行四边形的性质得AD=BC=8
在Rt△ABC中,AB=10,AD=8,AC⊥BC
根据勾股定理得AC==6,
则S平行四边形ABCD=BC•AC=1,故答案为:1.本题考查了平行四边形的对边相等的性质和勾股定理,正确求出AC的长是解题的关键.10、(3x+1)2【解析】
原式利用完全平方公式分解即可.【详解】解:原式=(3x+1)2,故答案为:(3x+1)2此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.11、2【解析】
由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.【详解】∵四边形ABCD为矩形,∴BD=AC=8,又∵矩形对角线的交点等分对角线,∴OD=4,又∵在△AOD中,EF为△AOD的中位线,∴EF=2.故答案为2.此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=812、﹣1≤m≤1【解析】
此题涉及的知识点是根据平面直角坐标系建立不等式,先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【详解】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣1≤m≤1,故答案为﹣1≤m≤1.此题重点考查学生对于平面直角坐标系的性质,根据平面直角坐标系建立不等式,熟练掌握不等式计算方法是解题的关键.13、2【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.【详解】解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=23,AB=2,
∴OE=23,CD=2,
则S菱形OCED=12OE•DC=12×23×2=23本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时,A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得,解得,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.15、(1)B型商品的进价为120元,A型商品的进价为150元;(2)5500元.【解析】
(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.【详解】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意:解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∴m=50时,w有最小值=5500(元)此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.16、①矩形②【解析】
(1)根据完美四边形的定义即可判断;(2)根据题意画出图形,根据等腰三角形和直角三角形的性质即可求解.【详解】解:(1)初步运用:矩形(2)问题探究:根据完美四边形的定义,结合题意可画出图形如下:∵,,∴,∵,∴,.∵,∴,∴.在等腰中,过点作于点.∴,由勾股定理可得:,,∴完美四边形的周长为15.∵,.∴完美四边形的面积为.此题主要考查四边形综合,解题的关键是熟知等腰梯形.等腰三角形及直角三角形的性质.17、(1)k=6;(2)直线CD的解析式为;(3)AB∥CD,理由见解析.【解析】
(1)把点D的坐标代入双曲线解析式,进行计算即可得解.(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答.(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【详解】解:(1)∵双曲线经过点D(6,1),∴,解得k=6.(2)设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=×6•h=12,解得h=4.∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1-4=-3.∴,解得x=-2.∴点C的坐标为(-2,-3).设直线CD的解析式为y=kx+b,则,解得.∴直线CD的解析式为.(3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),∴点A、B的坐标分别为A(-2,0),B(0,1).设直线AB的解析式为y=mx+n,则,解得.∴直线AB的解析式为.∵AB、CD的解析式k都等于相等.∴AB与CD的位置关系是AB∥CD.18、(1);(2)AG=;(3)当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.【解析】
(1)如图①,根据正方形的性质和全等三角形的性质即可得到结论;(2)如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到mb=AG•a,于是得到结论;(3)如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,根据平行四边形的面积公式得到=,根据三角形的面积公式列方程即可得到结论.【详解】(1)如图①,∵四边形ABCD是正方形,∴∠OAG=∠OBE=45°,OA=OB,在△AOG与△BOE中,,∴△AOG≌△BOE,∴S四边形AEOG=S△AOB=S正方形ABCD;故答案为;(2)如图②,过O作ON⊥AD于N,OM⊥AB于M,∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,∴S△AOB=S四边形AEOG,∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,∴S△BOE=S△AOG,∵S△BOE=BE•OM=m·b=mb,S△AOG=AG•ON=AG•a=AG•a,∴mb=AG•a,∴AG=;(3)如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.本题考查了正方形、矩形、平行四边形的性质及三角形、四边形的面积问题,认真阅读材料,理解并证明S△BOE=S△AOG是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、:2或﹣1.【解析】试题解析:当k>0时,y值随x值的增大而增大,∴,解得:,此时=2;当k<0时,y值随x值的增大减小,∴,解得:,此时=-1.综上所述:的值为2或-1.20、.【解析】
根据,即可解决问题.【详解】∵,∴.故答案为.本题考查向量的定义以及性质,解题的关键是理解向量的定义,记住:,这个关系式.21、【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.【详解】解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.22、【解析】
根据全等三角形的性质得到BH=AE=5,得到EH=BE-BH=7,根据勾股定理计算即可.【详解】,同理,HF=7,故答案为.本题考查了全等三角形的性质和勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.23、1【解析】
直接利用偶次方的性质以及二次根式的性质得出x,y的值进而得出答案.【详解】解:∵,∴x-1=0,y-1=0,解得:x=1,y=1,则xy=1.此题主要考查了完全平方公式,偶次方的性质以及二次根式的性质,正确掌握相关性质是解题关键.二、解答题(本大题共3个小题,共30分)24、(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;【解析】
(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗咨询服务标准体系研究-洞察分析
- 云计算中的数据安全问题-洞察分析
- 网络编码天线系统-洞察分析
- 小林姬鼠遗传学分析-洞察分析
- 天王星磁场与太阳风相互作用-洞察分析
- 戏剧与影视学中的跨文化研究-洞察分析
- 2024企业主要负责人安全培训考试题附答案(模拟题)
- 烟草行业监管政策分析-洞察分析
- 桩基础施工质量保证措施
- 班主任德育工作措施
- 工厂食堂安全卫生管理方案
- 中药硬膏热贴敷治疗
- 2024年人教版三年级上数学教学计划和进度安排
- 《电能计量知识介绍》课件
- 2023-2024学年山东省潍坊市高新区六年级(上)期末数学试卷(含答案)
- 弹性模量自动生成记录
- 2024年教师师德师风工作计划(2篇)
- 物流行业服务质量保障制度
- 养老院物资采购流程及制度
- 眼镜店年终总结及计划
- 汽车行走的艺术学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论