2025届黑龙江省鸡西中学九年级数学第一学期开学综合测试试题【含答案】_第1页
2025届黑龙江省鸡西中学九年级数学第一学期开学综合测试试题【含答案】_第2页
2025届黑龙江省鸡西中学九年级数学第一学期开学综合测试试题【含答案】_第3页
2025届黑龙江省鸡西中学九年级数学第一学期开学综合测试试题【含答案】_第4页
2025届黑龙江省鸡西中学九年级数学第一学期开学综合测试试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届黑龙江省鸡西中学九年级数学第一学期开学综合测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,四边形ABCD是长方形,AB=3,AD=1.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,) B.(,﹣3) C.(3,) D.(,3)2、(4分)如图,等腰梯形ABCD的对角线AC、BD相交于O,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对3、(4分)如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.4、(4分)如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是()A.x<-2 B.x>-2 C.x<-4 D.x>-45、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A.0.43× B.0.43× C.4.3× D.4.3×6、(4分)如图,点A在双曲线y=4x上,点B在双曲线y=kxk≠0,AB//x轴,分别过点A、B向x轴作垂线,垂足分别为D、C.若矩形ABCDA.12 B.10 C.8 D.67、(4分)用反证法证明“三角形中至少有一个内角大于或等于”时,应假设()A.三角形的二个内角小于 B.三角形的三个内角都小于C.三角形的二个内角大于 D.三角形的三个内角都大于8、(4分)已知直线y=-x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则的值为()A. B.1 C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.10、(4分)直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.11、(4分)如图,已知一次函数y=−x+b和y=ax−2的图象交于点P(−1,2),则根据图象可得不等式−x+b>ax−2的解集是______.12、(4分)已知一次函数的图象经过第一、二、四象限,则的取值范围是_____.13、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,1),B(-1,3),C(0,1).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后的△A1B1C;(2)平移△ABC,若点A的对应点A2的坐标为(-5,-3),画出平移后的△A2B2C2;(3)若△A2B2C2和△A1B1C关于点P中心对称,请直接写出旋转中心P的坐标.15、(8分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.16、(8分)如图,一次函数的图象与轴、轴分别交于、两点,与反比例函数交于点,过点分别作轴、轴的垂线,垂足分别为点、.若,,.(1)求点的坐标;(2)求一次函数和反比例函数的表达式.17、(10分)如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,与BD相交于H.(1)求∠BGE的大小;(2)求证:GC平分∠BGD.18、(10分)(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)计算:25的结果是_____.20、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.21、(4分)如图,直线与双曲线交于A、B两点,过点A作轴,垂足为M,连结BM,若,则k的值是______.22、(4分)如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.23、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知点A.B在双曲线y=

(x>0)上,AC⊥x轴于C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.(1)设A的横坐标为m,试用m、k表示B的坐标.(2)试判断四边形ABCD的形状,并说明理由.(3)若△ABP的面积为3,求该双曲线的解析式.25、(10分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=1.26、(12分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元检测期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

由矩形的性质可知CD=AB=3,BC=AD=1,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB=3,BC=AD=1,∵点A(﹣,﹣1),∴点C的坐标为(﹣+3,﹣1+1),即点C的坐标为(,3),故选D.本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2、C【解析】

由等腰梯形的性质可知,AB=CD,AC=BD,OA=OD,OB=OC,利用这些条件,就可以找图中的全等三角形了,有三对.【详解】∵四边形ABCD是等腰梯形,∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.故选C.本题考查等腰梯形的性质,全等三角形的判定.解本题时应先观察图,尽可能多的先找出图中的全等三角形,然后根据已知条件进行证明.3、A【解析】

根据题目已知条件可推出,AA1=OC=,B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.【详解】解:∵OB=,OC=1,

∴BC=2,

∴∠OBC=30°,∠OCB=60°.

而△AA1B1为等边三角形,∠A1AB1=60°,

∴∠COA1=30°,则∠CA1O=90°.

在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.4、C【解析】

以交点为分界,结合图象写出不等式kx<ax+b的解集即可.【详解】函数y=kx和y=ax+b的图象相交于点P(-1,-2).由图可知,不等式kx<ax+b的解集为x<-1.故选C.此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.5、D【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,故选:D.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、A【解析】

首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.【详解】过点A作AE⊥y轴于点E,∵点A在双曲线y=4∴矩形EODA的面积为:4,∵矩形ABCD的面积是8,∴矩形EOCB的面积为:4+8=1,则k的值为:xy=k=1.故选A.此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.7、B【解析】

反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:B.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.8、C【解析】

设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.【详解】解:如图,y=-x+6,令x=0,则y=6,令y=0,则x=6,故点A、B的坐标分别为(6,0)、(0,6),则AB==A′B,设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OA′2+OP2,即(a)2=(-6)2+(6-a)2,解得:a=12-,则PA=12-,OP=−6,则.故选:C.本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA′2=OA′2+OP2,从而求出PA、OP线段的长度,进而求解.二、填空题(本大题共5个小题,每小题4分,共20分)9、21【解析】10+7+4=2110、1【解析】试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.试题解析:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为1,∴OA×OB+12∴12解得:b1﹣b2=1.考点:两条直线相交或平行问题.11、x>-1;【解析】

根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】一次函数和的图象交于点,不等式的解集是.故答案为:.此题考查了一次函数与一元一次不等式的应用,主要考查了学生的观察能力和理解能力,题型较好,难度不大.12、【解析】

若函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,由此可以确定m的取值范围.【详解】解:∵直线y=(2m-3)x-m+5经过第一、二、四象限,

∴2m-3<0,-m+5>0,

故m<.

故答案是:m<.考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:

①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;

②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;

③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;

④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.13、2.1【解析】

根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.【详解】连结AP,在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴EF=AP.∵M是EF的中点,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴AP:AC=AB:BC,∴AP:8=6:10,∴AP最短时,AP=1.8,∴当AM最短时,AM=AP÷2=2.1.故答案为2.1解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)(-1,-1)【解析】

(1)分别将A,B绕C点旋转180°,得到A1,B1,再顺次连接即可得△A1B1C;(2)由A(-3,1)到A2(-5,-3)是向左平移2个单位,再向下平移4个单位,将B,C以同样的方式平移得到B2,C2,再顺次连接即可得△A2B2C2;(3)连接B1B2,CC2,交点即为旋转中心P.【详解】(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)旋转中心P的坐标为(-1,-1).本题考查网格作图,熟练掌握点的旋转与平移是解题的关键,寻找旋转中心的方法是连接旋转前后对应点,交点即为旋转中心.15、证明见解析【解析】

可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=12AD,FC=12∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.16、(1);(2).【解析】

(1)利用,可以就可以求出A点的坐标(2)利用A,B的坐标求出一次函数的解析式,然后利用C点坐标求出反比例函数的表达式。【详解】解:(1),而,,点坐标为;(2)点坐标为,把、代入得,即得,一次函数解析式为;把代入得,点坐标为,,反比例函数解析式为此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,数形结合思想是数学中重要的思想方法,做题时注意灵活运用.17、(1)∠BGE=60°;(2)见解析.【解析】

(1)由题意可证△ADB是等边三角形,可得AD=AB=BD,∠DAB=∠ADB=∠ABD,由“SAS”可证△ADE≌△DBF,可得∠ADE=∠DBF,由三角形外角性质可求∠BGE的大小;(2)过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由“AAS”可证Rt△CBN≌Rt△CDM,可得CM=CN,由角平分线的性质可得结论.【详解】(1)∵ABCD为菱形,∴AB=AD.∵∠BAD=60°,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;∴∠DBG=∠ADE∴∠EGB=∠DBG+∠BDG=∠ADE+∠BDG=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD.本题考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.18、(1);;;(2);(3).【解析】

(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【详解】解:(1);;;(2);(3)原式=.此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

根据算术平方根的定义,直接得出25表示21的算术平方根,即可得出答案.【详解】解:∵25表示21的算术平方根,且5∴25故答案是:1.此题主要考查了算术平方根的定义,必须注意算术平方根表示的是一个正数的平方等于某个数.20、1【解析】

分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知=OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.【详解】∵四边形ABCD是矩形,∴BD=AC=4,∴OA=2.∵,是DO、AD的中点,∴是△AOD的中位线,∴=OA=1.故答案为:1此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解21、1【解析】

由题意得:S△ABM=1S△AOM,又S△AOM=|k|,则k的值可求出.【详解】解:设A(x,y),∵直线与双曲线交于A、B两点,∴B(−x,−y),∴S△BOM=|xy|,S△AOM=|xy|,∴S△BOM=S△AOM,∴S△ABM=S△AOM+S△BOM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,∴k>0,故k=1.故答案为:1.本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.22、1【解析】

解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.【详解】解:解二元一次方程方程组解得或则A点坐标为(-2,2),B点坐标为(2,-2)C点坐标为(0,2),D点坐标为(2,-2)所以AC∥BD,AC=BD=2所以四边形ADBC是平行四边形则==2××2×4=1,故答案为1.本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.23、1【解析】

过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=1,故答案为:1.此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线二、解答题(本大题共3个小题,共30分)24、(1)B(2m,);(2)四边形ABCD是菱形,理由见解析;(3)y=.【解析】

(1)根据点P是AC的中点得到点A的横坐标是m,结合反比例函数图象上点的坐标特征来求点B的坐标;(2)根据点P的坐标得到点P是BD的中点,所以由“对角线互相垂直平分的四边形是菱形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论