




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02全等模型--一线三等角(K字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K字)模型)进行梳理及对应试题分析,方便掌握。模型1.一线三等角(K型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K型图”)钝角一线三等角条件:+CE=DE证明思路:+任一边相等例1.(2022·河南濮阳市·八年级期末)已知:D,A,E三点都在直线m上,在直线m的同一侧作,使,连接BD,CE.(1)如图①,若,,,求证;(2)如图②,若,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.例2.(2022·绵阳市·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.例3.(2022秋·河北张家口·八年级校考期中)如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.【解决问题】若点的运动速度与点的运动速度相等,当时,回答下面的问题:(1);(2)此时与是否全等,请说明理由;(3)求证:;【变式探究】若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.
例4.(2023·湖南岳阳·统考一模)如图,在ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=______°,∠AED=______°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.模型2.一线三等角(K型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:+任意一边相等证明思路:+任一边相等例1.(2023春·广西·七年级专题练习)问题1:在数学课本中我们研究过这样一道题目:如图1,∠ACB=90°,AC=BC,BE⊥MN,AD⊥MN,垂足分别为E、D.图中哪条线段与AD相等?并说明理由.问题2:试问在这种情况下线段DE、AD、BE具有怎样的等量关系?请写出来,不需要说明理由.问题3:当直线CE绕点C旋转到图2中直线MN的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并说明理由.例2.(2022秋·河北承德·八年级统考期末)如图1一直角三角板,,,过点C的直线l不经过三角形内部,过点A、B作,,垂足分别为D,E.(1)请你在图1中写出一对全等三角形:___________(2)请证明你所写结论.(3)尝试探究:若,;①图1中四边形的面积为:________(用含a,b的代数式表示,)②图2中过点C的直线l经过三角形内部,其它不变,则四边形的面积为:___________(用含a,b的代数式表示,)例3.(2023·江苏·八年级假期作业)在中,,直线经过点C,且于D,于E.(1)当直线绕点C旋转到图1的位置时,求证:①;②.(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线绕点C旋转到图3的位置时,试问具有怎样的等量关系?请写出这个等量关系,并加以证明.课后专项训练1.(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3 B.2 C. D.2.(2023·江苏·八年级假期作业)如图,在中,,分别过点B,C作过点A的直线的垂线BD,CE,垂足为D,E.若,求DE的长.3.(2022秋·绵阳市八年级课时练习)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠A=90°,∠B=30°,点D,E分别在AB,BC上,且∠CDE=90°.当BE=2AD时,图1中是否存在与CD相等的线段?若存在,请找出并加以证明,若不存在,说明理由.小明通过探究发现,过点E作AB的垂线EF,垂足为F,能得到一对全等三角形(如图2),从而将解决问题.请回答:(1)小明发现的与CD相等的线段是.(2)证明小明发现的结论.4.(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.5.(2023春·上海·七年级专题练习)通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,,,过点B作于点C,过点D作于点E.求证:.[模型应用]如图2,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,,,,连接,,且于点F,与直线交于点G.若,,则的面积为_____________.6.(2022秋·广东广州·八年级校考阶段练习)已知:CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,写出BE,EF,AF间的等量关系:.②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系.(2)如图3.若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.7.(2023·上海浦东新·八年级校考期中)在中,,,点在直线上(,除外),的垂线与的垂线交于点,研究和的数量关系.(1)在探究,的关系时,运用“从特殊到一般”的数学思想,发现当点是的中点时,只需要取边的中点(如图),通过推理证明就可以得到的数量关系,请你按照这种思路直接写出和的数量关系:_______________。(2)当点是线段上(,除外)任意一点(其它条件不变),上面得到的结论是否仍然成立呢?证明你的结论;(3)点在线段的延长线上,上面得到的结论是否仍然成立呢?在下图中画出图形,并证明你的结论.8.(2022·黑龙江牡丹江·九年级期末)平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.(1)当三角板绕点A顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当三角板绕点A顺时针旋转至图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.9.(2022·河南商丘市·九年级期末)如图(1),已知中,,;是过的一条直线,且,在的异侧,于,于.(1)求证:;(2)若直线绕点旋转到图(2)位置时(),其余条件不变,问与,的数量关系如何?请给予证明.(3)若直线绕点旋转到图(3)位置时(),其余条件不变,问与,的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线在不同位置时与,的位置关系.10.(2023春·上海·七年级专题练习)已知为等腰三角形,,直线过点(不经过点),过点作于点,过点作于点.(1)如图1,当点位于直线的同侧时,判断与的大小关系,并说明理由;(2)如图2,若点位于直线的两侧,①(1)的结论是否还能成立,请说明理由;②设与交于点,当时,判断与是否相等,并说明理由.11.(2023春·上海·七年级专题练习)(1)观察理解:如图1,∠ACB=90°,AC=BC,直线l过点C,点A,B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D,E,求证:△AEC≌△CDB.(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;②如图4,直角梯形ABCD中,,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆时针旋转90°至DE,△AED的面积为.12.(2022·安徽·九年级期末)如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则.(直接写出结果)13.(2022秋·八年级课时练习)在综合实践课上,李老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰纸片中,,,将一块含30°角的足够大的直角三角尺(,)按如图所示放置,顶点在线段上滑动(点不与,重合),三角尺的直角边始终经过点,并与的夹角,斜边交于点.(1)当时,______°;(2)当等于何值时,?请说明理由;(3)在点的滑动过程中,存在是等腰三角形吗?若存在,请求出夹角的大小;若不存在,请说明理由.14.(2023·重庆江津·八年级统考期末)(1)问题:如图①,在四边形中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年结构化布线系统的检测设备合作协议书
- 四川省泸州外国语学校2025届高三考前热身化学试卷含解析
- 2025年掺铒光纤放大器项目合作计划书
- 农用机械安全管理要求
- 三年级数学计算题专项练习汇编及答案
- 2025年航天器数管系统项目合作计划书
- 如何制定护理诊断
- 2025年图像存储与通讯系统(PACS)合作协议书
- 陕西艺术职业学院《线性代数B》2023-2024学年第二学期期末试卷
- 陕西警官职业学院《大数据与财务分析》2023-2024学年第二学期期末试卷
- 永川城市绿地系统分析
- 2021年班主任工作案例班级小团体4篇
- GB/T 2080-2007带圆角沉孔固定的硬质合金可转位刀片尺寸
- IEC61400-1风力发电机设计要求中文版
- 特基拉烈酒(Tequila)课件
- Sigma-Delta-ADC讲稿教学讲解课件
- 高考作文写作备考:“磨砺中提升自我”导写及范文
- 部编版小学二年级语文下册《口语交际图书借阅公约》教学反思(三篇)
- 卵巢癌根治术手术配合
- PPT模板 上海外国语大学
- 仓库绩效考核制度规定办法
评论
0/150
提交评论