




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(人教版)七年级上册数学期末复习重要考点02《整式的加减》十二大重要考点题型【题型1用含字母的式子表示数量关系】1.(2023秋•和平区校级月考)某班有x个男生,其中女生人数占45%,那么这个班级共有()人.A.45% B.(1﹣45%)x C.x45% D.2.(2023秋•梁子湖区期中)某商店举行促销活动,其促销的方式为“消费超过100元时,所购买的商品按原价打九折后,再减少30元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.90%(x﹣30) B.90%x﹣30 C.10%x﹣30 D.10%(x﹣30)3.(2023秋•梁子湖区期中)如图,池塘边有一块长为a米,宽为b米的长方形土地,现将其余三面都留出宽是1.5米的小路,中间余下的长方形部分做菜地,则菜地的周长为()A.(a+2b﹣4)米 B.(a+2b﹣12)米 C.(2a+2b﹣9)米 D.(2a+2b)米4.(2022秋•高新区期末)某地居民生活用水收费标准:每月用水量不超过20立方米,每立方米a元;超过部分每立方米(a+2)元.该地区某家庭上月用水量为25立方米,则应缴水费()A.25a元 B.(25a+10)元 C.(25a+50)元 D.(20a+10)元5.(2022秋•靖远县期末)一个两位数,十位上的数字为a,个位上的数字比十位上的数字少2,则这个两位数为()A.11a﹣20 B.11a+20 C.11a﹣2 D.11a+26.(2023•南岗区校级三模)随着通讯市场竞争的日益激烈,某品牌的价格春节期间降低了a元,五一前后又下调了25%,该现在的价格是b元,则原来的价格是元.7.(2023秋•临平区月考)一件商品每件成本a元,原来按成本价增加20%定出价格,现在由于库存积压减价,按原价打九折出售,现在每件可以盈利元.8.(2023秋•盐湖区期中)某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽xm,则修建的十字路的面积是m2.(用含x的代数式表示)【题型2单项式、多项式、整式相关概念】1.(2023秋•娄底期中)在﹣a,x2,2x,a2+b3,m3nA.6个 B.5个 C.4个 D.3个2.(2023秋•梁子湖区期中)下列关于单项式−xA.系数是﹣3,次数是2 B.系数是﹣3,次数是3 C.系数是−13,次数是2 D.系数是3.(2023秋•通道县期中)多项式2xy2−3x2y37−1的次数是4.(2023秋•镇赉县校级期末)在代数式x2+5,﹣1,﹣3x+2,π,5x,x2+1x+1A.3个 B.4个 C.5个 D.6个5.(2022秋•市中区期末)下列叙述,错误的是()A.单项式2x2y3的次数是5 B.3x2yC.25xD.有理数与数轴上的点一一对应6.(2023秋•南关区期末)将多项式3xy3﹣x2y3﹣9y+x3按x的升幂排列的结果是()A.x3﹣9y﹣x2y3+3xy3 B.x3﹣x2y3+3xy3﹣9y C.﹣9y+x3+3xy3﹣x2y3 D.﹣9y+3xy3﹣x2y3+x37.(2022秋•富平县期末)多项式6x2+5xy2﹣4xy﹣3y2中所有二次项系数的和是()A.4 B.3 C.2 D.﹣18.下列说法:①2xπ的系数是2;②多项式2x2+xy2+3是二次三项式;③x2﹣x﹣2的常数项为2;④在1x,2x+y,13A.1个 B.2个 C.3个 D.4个【题型3综合利用单项式、多项式的相关概念求值】1.若单项式−35xy3的系数是m,次数是nA.75 B.115 C.1752.已知﹣4x2yzm是关于x,y,z的5次单项式,m是常数,则m的值是()A.1 B.2 C.3 D.43.(2022秋•甘谷县校级期末)若5x2y|m|−14(m+1)y2−34.(2023秋•双峰县期中)若xn+1+(m﹣1)x+8是关于x的三次二项式,则m=,n=.5.(2023秋•邹城市期中)已知m,n为常数,代数式2x2y+mx3﹣ny+xy化简之后为单项式,则m+n=.6.(2022秋•秦都区期末)若关于x,y的多项式3x2﹣2xm+1y﹣1的次数是5,单项式﹣x的系数是n,求m+n的值.7.(2022秋•南江县校级月考)已知多项式﹣3xm+1y3+x3y﹣3x4﹣1是五次四项式,单项式3x3ny2的次数与这个多项式的次数相同.(1)求m,n的值;(2)把这个多项式按x降幂排列.8.已知:−12a2nb2﹣m是关于a,b的六次单项式,23a2bn+1+ab﹣2a2+b﹣5是关于a|m2﹣2m+n2|的值.【题型4合并同类项与去括号】1.(2022秋•南浔区期末)下列各式中是同类项的为()A.5x2y与﹣3xy2 B.xyz与﹣4xy C.﹣32与x2 D.﹣3x2y与3x2y2.(2022秋•灵宝市期末)下列各组中的两项,不是同类项的是()A.﹣x2y和2x2y B.23和32 C.﹣m3n2与12m2n3 D.2πR与π23.(2022秋•市中区期末)若﹣5a4bm﹣1与﹣anb是同类项,则m﹣n的值为()A.0 B.1 C.﹣1 D.﹣24.(2023秋•贵州期末)下列合并同类项的结果中,正确的是()A.﹣3ab﹣3ab=0 B.y﹣3y=﹣2y C.2m3+3m3=5m6 D.3a2﹣a2=35.(2022秋•新会区期末)下列计算中,去括号正确的是()A.﹣2(3x+1)=6x﹣2 B.﹣2(3x+1)=6x+2 C.﹣2(3x+1)=﹣6x﹣2 D.﹣2(3x+1)=﹣6x+26.(2022秋•嵩县期末)下列各式中,去括号或添括号正确的是()A.a2﹣(﹣b+c)=a2﹣b+c B.﹣2x﹣t﹣a+1=﹣(2x﹣t)+(a﹣1) C.3x﹣[5x﹣(2x﹣1)]=3x﹣5x﹣2x+1 D.a﹣3x+2y﹣1=a+(﹣3x+2y﹣1)7.先去括号,再合并同类项:(1)3a﹣b+(5a﹣3b+3);(2)(2b﹣3a)﹣(2a﹣3b+1);(3)4x2+2(x2﹣y2)﹣3(x2+y2).8.(2023秋•沙坪坝区校级月考)化简:(1)(m+n)﹣[3m+2(﹣m+n)];(2)(4a2b2﹣5ab2)﹣(3a2b2+4ab2);(3)3x2﹣{6xy+[4x2﹣8y2﹣(4xy﹣6y2)]﹣3x2}.【题型5整式的化简求值直接代入求值】1.(2022秋•保亭县期末)先化简,再求值:3x2y2﹣(4xy2﹣3)+(﹣5xy2﹣3x2y2),其中x=3,y=﹣1.2.(2023秋•东丰县期末)先化简,后求值:3(a2﹣ab+7)﹣2(3ab﹣a2+1)+3,其中a=2,b=13.(2023秋•昌邑区期中)先化简,再求值:3x2y﹣[3x2y﹣(2xy2﹣x2y)﹣4x2y]﹣xy2,其中x=1,y=﹣1.4.(2023秋•利辛县期中)先化简,再求值:3a2−[2b25.0.6.(2023秋•建昌县期中)求−13x−2(x+13y27.(2022秋•安新县期末)已知A=x2﹣3xy﹣y,B=﹣x2﹣xy+3y.(1)①化简A+B;②当﹣aby与12axb2(2)若x是﹣2的倒数,y是最大的负整数,求A﹣3B的值.【题型6整式的化简求值整体代入求值】1.(2023秋•东丰县期末)已知3m2﹣2m=1,则代数式9m2﹣6m﹣5的值是.2.(2023秋•天长市期中)若a2﹣2b2﹣2=0,则﹣3a2+6b2+2023的值为.3.(2023秋•宝鸡期中)已知当x=﹣3时,ax3﹣bx+5=9,则x=3时,ax3﹣bx+9的值为.4.(2023秋•北碚区校级期中)已知实数a,b,x,y满足a+b=2,x+y=3,ax+by=4,则(a2+b2)xy+ab(x2+y2)=.5.(2023秋•永福县期中)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若x+y=−67,xy=1,求2A﹣36.已知a﹣b=5,﹣ab=3,求(7a+4b+ab)−6(57.(2022秋•平定县期末)综合与探究【阅读理解】“整体思想”是一种重要的数学思想方法,在多项式的化简求值中应用极为广泛.比如,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a﹣b)看成一个整体,则4(a﹣b)﹣2(a﹣b)+(a﹣b)=(4﹣2+1)(a﹣b)=3(a﹣b).【尝试应用】根据阅读内容,运用“整体思想”,解答下列问题:(1)化简8(a+b)+6(a+b)﹣2(a+b)的结果是.(2)化简求值,9(x+y)2+3(x+y)+7(x+y)2﹣7(x+y),其中x+y=1【拓展探索】(3)若x2﹣2y=4,请求出﹣3x2+6y+2的值.【题型7整式加减中的错看问题】1.(2022秋•离石区期末)小文在做多项式减法运算时,将减去2a2+3a﹣5误认为是加上2a2+3a﹣5,求得的答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1 B.﹣3a2+a﹣4 C.a2+a﹣4 D.﹣3a2﹣5a+62.(2022秋•渠县校级期末)有一道题目是一个多项式A减去多项式2x2+5x﹣3,小胡同学将2x2+5x﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x﹣7,这道题目的正确结果是()A.x2+8x﹣4 B.﹣x2+3x﹣1 C.﹣3x2﹣x﹣7 D.x2+3x﹣73.(2022秋•内江期末)黑板上有一道题,是一个多项式减去3x2﹣5x+1,某同学由于大意,将减号抄成加号,得出结果是5x2+3x﹣7,这道题的正确结果是()A.8x2﹣2x﹣6 B.14x2﹣12x﹣5 C.2x2+8x﹣8 D.﹣x2+13x﹣94.(2023秋•长春期末)有这样一道题目:“先化简,再求值:(2x3﹣3x2y﹣2xy2)﹣2(x3﹣xy2+y3)+3(x2y﹣y3),其中x=13,粗心的龙龙在计算时把“x=13”错抄成“x5.(2023春•楚雄州期末)已知A=3x﹣4xy+2y,小明在计算2A﹣B时,误将其按2A+B计算,结果得到7x+4xy﹣y.(1)求多项式B.(2)求2A﹣B的正确结果是多少?6.(2022秋•台山市期末)小红做一道数学题“两个整式A,B,已知B为4x2﹣5x﹣6,试求A+2B的值“.小红误将A+2B看成A﹣2B,结果答案(计算正确)为﹣7x2+10x+12.(1)求整式A;(2)求出当x=﹣3时,A+2B的值.【题型8整式加减中与某个字母(某项)无关问题】1.(2023秋•十堰期中)若代数式x2+ax﹣(bx2﹣x﹣3)的值与字母x无关,则a﹣b的值为()A.0 B.﹣2 C.2 D.12.(2023秋•禹州市期中)若多项式(2k+3)x2y+3x﹣7x2y﹣5y+1中不含x2y的项,则k的值为.3.(2022秋•蚌埠期末)已知A=3a2﹣ab+b+2,B=3a2﹣2ab+4b﹣1,若A﹣B的值与b无关,则a的值为.4.(2023秋•清苑区期中)已知代数式A=4x2﹣mx+2m,B=2x2﹣mx+x,若A﹣2B的值与x的取值无关,则m的值为()A.3 B.2 C.1 D.05.(2022秋•烟台期末)若代数式3x2+ax+4﹣(bx2+2x)的值与x的取值无关,化简求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.6.(2023秋•天长市期中)已知:A=2a2﹣5ab+3b,B=4a2+6ab+8a.(1)化简:2A﹣B;(2)若a=﹣2,b=1,求2A﹣B的值;(3)若代数式2A﹣B的值与a无关,求此时b的值.【题型9整式加减与数轴、绝对值的结合】1.(2023秋•宁江区期末)已知有理数a、b、c在数轴上的对应点如图所示,|a﹣b|+|b﹣c|﹣|c﹣a|的结果()A.a﹣b B.b+c C.0 D.a﹣c2.(2022秋•洪山区校级期末)数轴上,有理数a、b、﹣a、c的位置如图,则化简|a+c|+|a+b|+|c﹣b|的结果为()A.2a+2c B.2a+2b C.2c﹣2b D.03.(2023秋•东丰县期末)已知a,b,c在数轴上的位置如图所示,求|a﹣b|﹣|b+c|+|a﹣b|﹣|c﹣b|的值.4.(2023秋•禹州市期中)已知数轴上A,B,C三点对应的数分别是a,b,c,若a<0,b<0,|a|<|b|,c为最小的正整数.(1)请在数轴上标出A,B,C三点的大致位置;(2)化简:|a﹣b|﹣2|b﹣a﹣c|+|b﹣2c|.5.(2022秋•黔西南州期末)有理数a,b,c在数轴上的位置如图:(1)用“>”或“<”填空a0,b0,c﹣b0,ab0.(2)化简:|a|﹣|b+c|﹣|a﹣c|.6.(2023秋•江都区期中)已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|.(1)求a+b和ab(2)填空:a0;a+b0;c﹣a0;c﹣b0;﹣2b0;(3)化简:|a|﹣|a+b|﹣|c﹣a|+|c﹣b|﹣|﹣2b|.【题型10利用整式加减解决实际问题】1.(2022秋•侯马市期末)长方形一边的长为3m+2n,与其相邻的另一边的长比它长m﹣n,则这个长方形的周长是()A.7m+3n B.7m+5n C.14m+10n D.14m+6n2.(2023秋•临沭县期中)已知B,C,D三个车站的位置如图所示,B,C两站之间的距离是2a﹣b,B,D两站之间的距离是72a﹣2b﹣1,则C,DA.112a﹣3b﹣1 B.32a+b+1 C.32a﹣b﹣1 D.323.(2022秋•涧西区校级期末)如图,两个矩形的一部分重叠在一起,重叠部分是面积是4的正方形,则阴影部分的面积为()A.ab+cd﹣4 B.ab+cd+4 C.ab+cd﹣8 D.ab+cd+84.(2023•青羊区校级自主招生)如图1,将一个边长为m的正方形纸片剪去两个小长方形得到一个如图2所示的图形,再将剪下的两个小长方形拼成如图3所示的一个新的长方形,则图3中的长方形的周长为()A.2m﹣3n B.4m﹣8n C.2m﹣4n D.4m﹣10n5.(2022秋•安乡县期末)如图,从一个长方形铁皮中剪去一个小正方形,长方形的长为2a米,宽为b米,小正方形的边长为a米.(1)求剩余铁皮的面积;(2)当a=23,6.(2022秋•碑林区校级期中)某超市销售茶壶、茶杯,每只茶壶定价20元,每只茶杯定价4元.今年“双十一”期间开展促销活动,向顾客提供两种优惠方案:方案一:每买一只茶壶就赠一只茶杯;方案二:茶壶和茶杯都按定价的90%付款.某顾客计划到这家超市购买6只茶壶和x只茶杯(茶杯数多于6只).(1)用含x的代数式分别表示方案一与方案二各需付款多少元?(2)当x=25时,若规定每位顾客只能在以上两种方案中任选一种,请通过计算说明该顾客选择上面两种购买方案中哪一种更省钱?7.(2022秋•安定区期末)某家具厂生产一种课桌和椅子课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子(x>100).(1)用含x的代数式分别表示方案一与方案二各需付款多少元?(2)当x=300时,通过计算说明该校选择上面的两种购买方案哪种更省钱?(3)当x为何值时,按两种优惠方案购买付款金额相同?【题型11利用整式加减进行新定义运算】1.现规定一种新的运算:abcd=ad﹣cb,则xy−3x2.(2023•任城区校级三模)定义:若a+b=ab,则称a、b是“西溪数”,例如:3+1.5=3×1.5,因此3和1.5是一组“西溪数”,若m、n是一组“西溪数”,则2mn﹣(3mn﹣m﹣n﹣6)的值为.3.(2023秋•长清区期中)定义新运算“⊗”与“⊕”:a⊗b=2a+b,a⊕b=a﹣2b.(1)请分别计算1⊗3和2⊕(﹣1)的值;(2)化简:[m⊗(﹣n)]﹣[(﹣n)⊕m].4.(2023•陈仓区三模)一个三位数整数,a代表这个整数最左边的数,b代表这个整数最右边的数.若a+b2正好为剩下的中间数,则这个三位数就叫平衡数,例如:357满足3+7(1)判断:468平衡数;(填“是”或“不是”)(2)证明:任意一个三位数的平衡数一定能被3整除.5.(2022秋•工业园区校级月考)定义一种新运算:观察下列各式:1⊙3=1×4+3=7;3⊙(﹣1)=3×4﹣1=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4﹣3=13.(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙bb⊙a(填“=”或“≠”);(3)先化简,再求值:(a﹣b)⊙(2a+b),其中a=1,b=2.6.(2023秋•乐至县校级期中)对于任何数,我们规定:abcd=ad﹣4﹣6=﹣2.(1)按照这个规定,请你化简:−52(2)按照这个规定,当a2﹣4a+2=0时,求a+23【题型12整式中的规律探究问题】1.(2023秋•天长市期中)观察下列关于x的单项式,探究其规律:﹣2x,4x2,﹣6x3,8x4,﹣10x5,12x6,…按照上述规律,第2023个单项式是()A.﹣4046x2022 B.4046x2022 C.﹣4046x2023 D.4046x20232.(2022秋•舒城县期末)观察一组数据:1,1,2,4,7,11,16,22,29,…,若记第一个数为a1,记第二个数为a2,…,记第n个数为an.通过计算a2﹣a1,a3﹣a2,a4﹣a3,…发现它们有一定的规律,由此规律推算a100的值应为()A.5152 B.5051 C.4951 D.48523.(2023秋•贵州期末)如图图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中共有6个小圆圈,第②个图形中共有9个小圆圈,第③个图形中共有12个小圆圈,…,按此规律,则第⑲个图形中小圆圈的个数为()A.60 B.63 C.66 D.694.有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.5.(2023•白银模拟)下列图形都是由完全相同的小梯形按一定规律组成的,如果第1个图形的周长为5,那么第个图形的周长为32.6.(2023秋•盐湖区期中)由白色小正方形和灰色小正方形组成的图形如图所示,则第n个图形中白色小正方形和灰色小正方形的个数总和为个.(用含n的代数式表示)7.(2023秋•连山区期中)下列图形按一定规律排列,观察并回答:(1)依照此规律,第4个图形共有个★,第7个图形共有个★;(2)第n个图形中有★个;(3)根据(2)中的结论,第几个图形中有2023个★?1.(2022秋•岱岳区期末)一种商品进价为每件m元,按进价增加40%出售,后因库存积压降价,按售价的八折出售,此时售价为()A.1.25m元 B.1.12m元 C.1.32m元 D.0.98m元2.(2023秋•桐城市期中)下列说法正确的是()A.2x3+1是单项式 B.﹣a3的系数是1 C.3m2﹣1是三次多项式 D.2是单项式3.(2022秋•烟台期末)若﹣5xa+1yb﹣2与7x3y2是同类项,则a、b的值分别是()A.a=2,b=4 B.a=4,b=0 C.a=2,b=﹣4 D.以上都不对4.(2023秋•水城区期中)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣(a+b﹣c)=﹣a﹣b+c C.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c5.(2023秋•灞桥区校级期中)已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,若A+2B的值与a的取值无关,则b的值为()A.23 B.13 C.256.(2022秋•河池期末)若A=2x2+x+1,B=x2+x,则A、B的大小关系()A.A>B B.A<B C.A=B D.不能确定7.(2023秋•德惠市期末)某同学上学时步行,回家时乘车,路上共用a小时.如果往返都乘车,则共需b小时,那么往返都步行需要小时.8.(2022秋•海阳市期末)若多项式﹣2x|m|﹣(m﹣2)x﹣1是关于x的二次三项式,则m的值为.9.(2022秋•潍坊校级期末)已知x2﹣x﹣4=0,则2﹣3x2+3x的值.10.(2023秋•温江区校级期中)化简下列式子:(1)3x﹣2y﹣x﹣6y+2;(2)(2a2+1)﹣(2﹣3a2);(3)3(x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 血脂异常护理查房
- 出纳银行业务办理
- 美容美发行业分析报告
- 化学高中课程标准解读
- 办公用品管理
- 船舶货物包装与运输保护
- 新发展英语(第二版)综合教程2 课件 Unit 4 Making Offers and Giving Responses
- a-lively-city知识教学课件
- 人教版数学六年级下册期末应用题
- 北京市丰台区2025年高三下学期正月开学联考历史试题含解析
- 2025年东北三省三校二模联考语文试卷
- 保密知识题库含答案
- 共享农场合同标准文本
- 医院建设项目智能化专项工程技术要求
- 2024年中国银行招聘考试真题
- 管理学基础-形考任务三-国开-参考资料
- 2024-2025学年北师大版七年级数学上册期末复习压轴题12个(84题)含答案
- 2023年北京市大兴区小升初数学模拟试卷(含答案)
- 2025年河南交通职业技术学院单招职业技能测试题库审定版
- 第二十一章传导热疗法讲解
- 2025年河南职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
评论
0/150
提交评论