版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省宁乡县第一高级中学数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线2.已知函数是定义域上的递减函数,则实数a的取值范围是()A. B.C. D.3.为了得到函数的图象,可以将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位4.已知函数,则的值是()A. B.C. D.5.已知函数在上有两个零点,则的取值范围为()A. B.C. D.6.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=8,EF=5,则AB与CD所成角的度数为A.30° B.45°C.60° D.90°7.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.88.若,则的值为()A. B.C.或 D.9.函数在区间的图象大致是()A. B.C. D.10.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则=____________12.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________13.在中,已知是x的方程的两个实根,则________14.已知指数函数的解析式为,则函数的零点为_________15.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数16.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.18.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围19.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.20.已知函数的部分图象如图所示.(1)求函数f(x)的解析式,并求出该函数的单调递增区间;(2)若,且,求的值.21.已知是偶函数,是奇函数,且,(1)求和的表达式;(2)若对于任意的,不等式恒成立,求的最大值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C2、B【解析】由指数函数的单调性知,即二次函数是开口向下的,利用二次函数的对称轴与1比较,再利用分段函数的单调性,可以构造一个关于a的不等式,解不等式即可得到实数a的取值范围【详解】函数是定义域上的递减函数,当时,为减函数,故;当时,为减函数,由,得,开口向下,对称轴为,即,解得;当时,由分段函数单调性知,,解得;综上三个条件都满足,实数a的取值范围是故选:B.【点睛】易错点睛:本题考查分段函数单调性,函数单调性的性质,其中解答时易忽略函数在整个定义域上为减函数,则在分界点处()时,前一段的函数值不小于后一段的函数值,考查学生的分析能力与运算能力,属于中档题.3、A【解析】,设,,令,把函数的图象向右平移个单位得到函数的图象.选A.4、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D5、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.6、D【解析】取BC的中点P,连接PE,PF,则∠FPE(或补角)是AB与CD所成的角,利用勾股定理可求该角为直角.【详解】如图,取BC的中点P,连接PE,PF,则PF//CD,∠FPE(或补角)是AB与CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故选:D.【点睛】本题考查异面直线所成的角,此类问题一般需要通过平移构建平面角,再利用解三角形的方法求解.7、B【解析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.8、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.9、C【解析】判断函数非奇非偶函数,排除选项A、B,在计算时的函数值可排除选项D,进而可得正确选项.【详解】因为,且,所以既不是奇函数也不是偶函数,排除选项A、B,因为,排除选项D,故选:C【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.10、D【解析】因为有直观图可知,该几何体的正视图是有一条从左上角到右下角的对角线的正方形,俯视图是有一条从左下角角到右上角角的对角线的正方形,侧视图是有一条从左上角到右下角的对角线的正方形(对角线为虚线),所以只有选项D合题意,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.12、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]13、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.14、1【解析】解方程可得【详解】由得,故答案为:115、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:16、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运算性质,结合恒等式的性质可得所求值;(2)运用对数运算性质及均值不等式即可得到结果;(3)先证明函数单调性,化抽象不等式为具体不等式,转求函数的最值即可.【小问1详解】因为为偶函数,所以,所以,所以,所以.【小问2详解】因为,所以(当且仅当时等号成立),所以最小值为.【小问3详解】,任取且,所以,因为且,所以,所以,所以,所以,所以在上为增函数,又因为为偶函数,所以,当时,,当时,,所以,设(当且仅当时,等号成立),因为,所以等号能成立,所以,所以,所以,综上,.18、(1);(2);(3).【解析】(1)根据f(x)图像过点,且满足列出关于m和n的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值;(3)由题可知方程x=g(x)有两个正根,根据韦达定理即可求出t范围.【小问1详解】∵的图象过点,∴①又,∴②由①②解,,∴;【小问2详解】,,当,即时,函数在上单调递减,∴;当,即时,函数在上单调递减,在单调递增,∴;当时,函数在上单调递增,∴综上,【小问3详解】设有两个不相等的不动点、,且,,∴,即方程有两个不相等的正实根、∴,解得19、(1)奇函数(2)在上单调递增(3)【解析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所以不等式的解集为20、(1)答案见解析;(2).【解析】(1)根据函数图象可得A,周期T,即可求出,再由图象过点即可求出,得到函数解析式,求出单调区间;(2)由求出,再由两角差的正弦公式直接计算即可.小问1详解】由图象可知,A=2,且,解得所以,因为,所以则,则仅当时,符合题意,所以,令,解得综上,解析式为,单调增区间为;【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政府办公楼外墙翻新腻子施工合同
- 保安劳动合同模板及注意事项
- 2025年度环保产业信息咨询服务协议3篇
- 电信网络全资子公司治理结构
- 地下商业街降水施工分包合同
- 通信网络项目商务标指南
- 2025关于网上专利申请委托合同
- 临时演员参演现代都市剧协议
- 二手车交易协议大全及指导手册下载版B版
- 建筑涂料成本浮动合同应对措施
- 工程款支付报审表
- 《项目施工组织设计开题报告(含提纲)3000字》
- ICU常见药物课件
- CNAS实验室评审不符合项整改报告
- 农民工考勤表(模板)
- 承台混凝土施工技术交底
- 卧床患者更换床单-轴线翻身
- 计量基础知识培训教材201309
- 中考英语 短文填词、选词填空练习
- 阿特拉斯基本拧紧技术ppt课件
- 新课程理念下的班主任工作艺术
评论
0/150
提交评论