版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省普通高校2025届高二数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.2.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.3.数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153 B.190C.231 D.2764.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=05.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆离心率为()A. B.C. D.6.若,则()A.1 B.0C. D.7.“”是“直线与圆相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则9.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种10.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.3711.直线在y轴上的截距为()A. B.C. D.12.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率为__________________.14.经过点,的直线的倾斜角为___________.15.若满足约束条件,则的最小值为________.16.已知函数,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.18.(12分)如图1,已知矩形ABCD,,,E,F分别为AB,CD的中点,将ABCD卷成一个圆柱,使得BC与AD重合(如图2),MNGH为圆柱的轴截面,且平面平面MNGH,NG与曲线DE交于点P(1)证明:平面平面MNGH;(2)判断平面PAE与平面PDH夹角与的大小,并说明理由19.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项20.(12分)某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,设牧场从今年起每年年初的计划存栏数依次为,,….(参考数据:,,.)(1)写出一个递推公式,表示与之间的关系;(2)将(1)中的递推关系表示成的形式,其中k,r为常数;(3)求的值(精确到1).21.(12分)已知直线,圆.(1)若l与圆C相切,求切点坐标;(2)若l与圆C交于A,B,且,求的面积.22.(10分)等差数列的公差d不为0,满足成等比数列,数列满足.(1)求数列与通项公式:(2)若,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】用向量分别表示,利用向量的夹角公式即可求解.【详解】由题意可得,故选:D【点睛】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.2、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.3、B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:B【点睛】本题考查合情推理中的归纳推理;考查逻辑推理能力;观察分析、寻求规律是求解本题的关键;属于中档题、探索型试题.4、B【解析】由题意,,所以,即,故选B5、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.6、C【解析】由结合二项式定理可得出,利用二项式系数和公式可求得的值.【详解】,当且时,,因此,.故选:C.【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式,考查学生的转化能力与计算能力,属于基础题.7、A【解析】根据题意,结合直线与圆的位置关系求出,即可求解.【详解】根据题意,由直线与圆相切,知圆心到直线的距离,解得或,因此“”是“直线与圆相切”的充分不必要条件.故选:A.8、D【解析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D9、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C10、C【解析】直接按照等差数列项数性质求解即可.【详解】数列的前6项之和为.故选:C.11、D【解析】将代入直线方程求y值即可.【详解】令,则,得.所以直线在y轴上的截距为.故选:D12、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程确定a,b,c的值,求出离心率.【详解】由双曲线可得:,故,故答案为:14、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:15、5【解析】作出可行域,作直线,平移该直线可得最优解【详解】作出可行域,如图内部(含边界),作直线,直线中是直线的纵截距,代入得,即平移直线,当直线过点时取得最小值5故答案为:516、【解析】直接利用分段函数的解析式即可求解.【详解】因为,所以,所以.故答案为:-1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.18、(1)证明见解析(2)平面PAE与平面PDH夹角大于,理由见解析【解析】(1)由面面垂直证明,然后得证平面MNGH后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求出二面角的余弦可得结论【小问1详解】如图O,为圆柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因为平面PAE,所以平面平面MNGH;【小问2详解】因为,所以得,如图,以为坐标原点,以,,所在直线为x,y,z轴建立空间直角坐标系,则可知,,,,,则,,,,设平面AEP的法向量为,则,令,得,设平面DHP的法向量为,则,即令,得,,设平面PAE与平面PDH夹角为,则,,因为,即,所以平面PAE与平面PDH夹角大于19、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求出展开式的通项公式,然后令的指数为即可求解【小问1详解】∵的展开式中,只有第6项的二项式系数最大,∴展开后一共有11项,则,解得;【小问2详解】二项式的展开式的通项公式为,令,解得,∴展开式中含的项为20、(1)(2)(3)10626【解析】(1)根据题意,建立递推关系即可;(2)利用待定系数法求解得.(3)利用等比数列求和公式,结合已知数据求解即可.【小问1详解】解:因为某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,所以,且.【小问2详解】解:将化成,因为所以比较的系数,可得,解得.所以(1)中的递推公式可以化为.【小问3详解】解:由(2)可知,数列是以为首项,1.08为公比的等比数列,则.所以.21、(1)(2)【解析】(1)求出直线的定点,再由定点在圆上得出切点坐标;(2)由(1)知,证明为直角三角形,求出,,最后由三角形的面积公式求出的面积.【详解】(1)圆可化为直线可化为,由解得即直线过定点,由于,则点在圆上因为l与圆C相切,所以切点坐标为(2)因为l与圆C交于A,B,所以点如下图所示,与相交于点,由以及圆的对称性可知,点为的中点,且由,则直线的方程为圆心到直线的距离为,即直线与圆相切即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版城市道路排水设施承包合同:城市道路排水设施维护承包合同3篇
- 2024年度危险化学品废弃物处理合同3篇
- 2024年度绿色节能住宅房地产定向开发合同3篇
- 2024版商铺使用权转让合同样本3篇
- 2024年度新能源发电项目电力施工劳务合作合同范本2篇
- 2024版定制门窗设计与施工绿色建材合同2篇
- 2024年环保型二手房产买卖合同(含绿色装修及环保认证)3篇
- 2024年水电安装工程应急预案清包合同范本3篇
- 2024版交通物流财产权利质押借款合同范本2篇
- 2024年橄榄油连锁采购合同
- 机床操作说明书
- 义务教育物理课程标准(2022年版)测试卷(含答案)
- NY/T 396-2000农用水源环境质量监测技术规范
- GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法
- GB/T 36652-2018TFT混合液晶材料规范
- 国际商务谈判 袁其刚课件 第四章-国际商务谈判的结构和过程
- 国际商法教案(20092新版)
- 江苏开放大学汉语作为第二语言教学概论期末复习题
- 工作简化方法改善与流程分析课件
- 国家开放大学《管理学基础》形考任务1-4参考答案
- 道德与法治《健康看电视》优秀课件
评论
0/150
提交评论