湖南省衡阳市衡阳县2025届数学高一上期末检测模拟试题含解析_第1页
湖南省衡阳市衡阳县2025届数学高一上期末检测模拟试题含解析_第2页
湖南省衡阳市衡阳县2025届数学高一上期末检测模拟试题含解析_第3页
湖南省衡阳市衡阳县2025届数学高一上期末检测模拟试题含解析_第4页
湖南省衡阳市衡阳县2025届数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市衡阳县2025届数学高一上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与2022°终边相同的角是()A. B.C.222° D.142°2.已知函数,若对任意,总存在,使得,则实数的取值范围是()A. B.C. D.3.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.4.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.45.在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.6.已知则的值为()A. B.2C.7 D.57.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.88.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.9.已知集合,则下列关系中正确的是()A. B.C. D.10.的值是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________.12.平面向量,,(R),且与的夹角等于与的夹角,则___.13.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______14.函数的图象为,以下结论中正确的是______(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③由的图象向右平移个单位长度可以得到图象;④函数在区间内是增函数.15.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是_____.(填序号)①PB⊥AD;②平面PAB⊥平面PBC;③直线BC∥平面PAE;④sin∠PDA16.直线2x+(1-a)y+2=0与直线ax-3y-2=0平行,则a=__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.(1)求证A1C⊥平面EBD;(2)求二面角B1—BE—A1的正切值.18.解下列不等式:(1);(2).19.已知(1)化简;(2)若,求的值20.已知函数.(1)求的周期和单调区间;(2)若,,求的值.21.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】∵2022°=360°×5+222°,∴与2022°终边相同的角是222°.故选:C.2、C【解析】先将不等式转化为对应函数最值问题:,再根据函数单调性求最值,最后解不等式得结果.【详解】因为对任意,总存在,使得,所以,因为当且仅当时取等号,所以,因为,所以.故选:C.【点睛】对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即;,3、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D4、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.5、C【解析】由已知可得AD⊥DC又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)∴cos∠BEF=故选C.6、B【解析】先算,再求【详解】,故选:B7、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.8、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题9、C【解析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题.10、C【解析】由,应用诱导公式求值即可.【详解】.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意求出函数的单调区间及所过的定点,进而解出不等式.【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,.所以且在上为增函数,,在上为减函数,.所以的解集为:.故答案为:.12、2【解析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角13、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.14、①②④【解析】利用整体代入的方式求出对称中心和对称轴,分析单调区间,利用函数的平移方式检验平移后的图象.【详解】由题意,,令,,当时,即函数的一条对称轴,所以①正确;令,,当时,,所以是函数的一个对称中心,所以②正确;当,,在区间内是增函数,所以④正确;的图象向右平移个单位长度得到,与函数不相等,所以③错误.故答案为:①②④.15、④【解析】由题意,分别根据线面位置关系的判定定理和性质定理,逐项判定,即可得到答案.【详解】∵PA⊥平面ABC,如果PB⊥AD,可得AD⊥AB,但是AD与AB成60°,∴①不成立,过A作AG⊥PB于G,如果平面PAB⊥平面PBC,可得AG⊥BC,∵PA⊥BC,∴BC⊥平面PAB,∴BC⊥AB,矛盾,所以②不正确;BC与AE是相交直线,所以BC一定不与平面PAE平行,所以③不正确;在Rt△PAD中,由于AD=2AB=2PA,∴sin∠PDA,所以④正确;故答案为:④【点睛】本题考查线面位置关系判定与证明,考查线线角,属于基础题.熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.16、3【解析】a=0时不满足条件,∵直线2x+(1-a)y+2=0与直线ax-3y-2=0平行a≠0,∴解得a=3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD;(2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案.【小问1详解】证明:平面,,又,,平面,,又平面,,且,,平面,,又,A1C⊥平面EBD;【小问2详解】解:平面,又,是二面角的平面角,在中,,在中,,.18、(1)或(2)【解析】【小问1详解】(1)因为,所以方程有两个不等实根x1=-1,x2=-3.所以原不等式的解集为或.【小问2详解】(2)因为,所以方程有两个相等实根x1=x2=所以原不等式的解集为.19、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故值为.20、(1)周期为,增区间为,减区间为;(2).【解析】(1)利用三角恒等变换思想可得出,利用周期公式可求出函数的周期,分别解不等式和,可得出该函数的增区间和减区间;(2)由可得出,利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式可求出的值.详解】(1),所以,函数的周期为,令,解得;令,解得.因此,函数的增区间为,减区间为;(2),,,,,.【点睛】本题考查正弦型函数周期和单调区间的求解,同时也考查了利用两角差的余弦公式求值,考查运算求解能力,属于中等题.21、(1)是等腰直角三角形(2)A,B,C,D四点共圆;理由见解析【解析】(1)利用两点间距离公式可求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论