2025届西藏示范名校高二上数学期末质量检测试题含解析_第1页
2025届西藏示范名校高二上数学期末质量检测试题含解析_第2页
2025届西藏示范名校高二上数学期末质量检测试题含解析_第3页
2025届西藏示范名校高二上数学期末质量检测试题含解析_第4页
2025届西藏示范名校高二上数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届西藏示范名校高二上数学期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③2.抛物线的焦点到其准线的距离是()A.4 B.3C.2 D.13.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.74.若实数满足,则点不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.若方程表示圆,则实数的取值范围为()A. B.C. D.6.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.7.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−38.变量,之间的一组相关数据如表所示:若,之间的线性回归方程为,则的值为()45678.27.86.65.4A. B.C. D.9.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.10.下列抛物线中,以点为焦点的是()A. B.C. D.11.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定12.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.110二、填空题:本题共4小题,每小题5分,共20分。13.复数的实部为_________14.若两条直线与互相垂直,则a的值为______.15.若圆平分圆的周长,则直线被圆所截得的弦长为____________16.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求的长.18.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程19.(12分)设椭圆:的左顶点为,右顶点为.已知椭圆的离心率为,且以线段为直径的圆被直线所截得的弦长为.(1)求椭圆的标准方程;(2)设过点的直线与椭圆交于点,且点在第一象限,点关于轴对称点为点,直线与直线交于点,若直线斜率大于,求直线的斜率的取值范围.20.(12分)已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.21.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.22.(10分)经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到)(2)为保证在该时段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D2、C【解析】由抛物线焦点到准线的距离为求解即可.【详解】因为抛物线焦点到准线的距离为,故抛物线的焦点到其准线的距离是2.故选:C【点睛】本题主要考查了抛物线的标准方程中的几何意义,属于基础题型.3、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D4、B【解析】作出给定的不等式组表示的平面区域,观察图形即可得解.【详解】因实数满足,作出不等式组表示的平面区域,如图中阴影部分,观察图形知,阴影区域不过第二象限,即点不可能落在第二象限.故选:B5、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.6、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题7、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B8、C【解析】本题先求样本点中心,再利用线性回归方程过样本点中心直接求解即可.【详解】解:,,所以样本点中心:,线性回归方程过样本点中心,则解得:,故选:C【点睛】本题考查线性回归方程过样本点中心,是简单题.9、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.10、A【解析】由题意设出抛物线的方程,再结合焦点坐标即可求出抛物线的方程.【详解】∵抛物线为,∴可设抛物线方程为,∴即,∴抛物线方程为,故选:A.11、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C12、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】复数,其实部为.考点:复数的乘法运算、实部.14、4【解析】两直线斜率均存在时,两直线垂直,斜率相乘等于-1,据此即可求解.【详解】由题可知,.故答案为:4.15、6【解析】根据两圆的公共弦过圆的圆心即可获解【详解】两圆相减得公共弦所在的直线方程为由题知两圆的公共弦过圆的圆心,所以即,又,所以到直线的距离所以直线被圆所截得的弦长为故答案为:616、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用公式直接将椭圆的参数方程转化为普通方程即可.(2)首先求出直线的参数方程,代入椭圆的普通方程得到,再利用直线参数方程的几何意义求弦长即可.【详解】(1)因为曲线(为参数),所以曲线的普通方程为:.(2)由题知:直线的参数方程为(为参数),将直线的参数方程代入,得.,.所以.18、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦长|AB|最短时,因为直线PC的斜率所以此时直线的斜率所以当弦长|AB|最短时,求直线的方程为,即【小问2详解】设,易知圆心D在轴上方,圆D半径为因为圆与圆外切,所以即整理得点的轨迹方程为19、(1);(2).【解析】(1)根据直线被圆截得的弦长为,由解得,再由离心率结合求解。(2)设,则,得到直线:;直线:,联立求得,再根据线斜率大于,求得,然后由求解.【详解】(1)以线段为直径的圆的圆心为:,半径,圆心到直线的距离,直线被圆截得的弦长为,解得:,又椭圆离心率,∴,,椭圆的标准方程为:.(2)设,其中,,则,∴,,则直线为:;直线为:,由得:,∴,∴,∴,令,,则,∴,∵∴,∴,即.【点睛】本题主要考查椭圆方程和几何性质以及直线与圆,椭圆的位置关系的应用,还考查了运算求解的能力,属于中档题.20、(1)(2)或【解析】(1)设曲线上的任意一点,由题意可得,化简即可得出(2)分直线的斜率不存在与存在两种情况讨论,当斜率不存在时,即可求出、的坐标,从而求出,当直线的斜率存在,设直线方程为,,,联立直线与圆的方程,消元列出韦达定理,则,即可求出,从而求出直线方程,由圆心在直线上,即可求出弦长;【小问1详解】解:(1)设曲线上的任意一点,由题意可得:,即,整理得【小问2详解】解:依题意当直线的斜率不存在时,直线方程为,则,则或,即、,所以、,所以满足条件,此时,当直线的斜率存在,设直线方程为,,,则,消去整理得,由,解得或,所以、,因为,,所以,解得,所以直线方程为,又直线过圆心,所以,综上可得或;21、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距离和半径比较即可判断;(2)求出圆心到直线的距离,利用弦长计算即可得出.【详解】(1)圆C:的圆心为,半径为2,当时,线l:,则圆心到直线的距离为,直线l与圆C相离;(2)圆心到直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论