2025届山西省西安中学高二上数学期末综合测试模拟试题含解析_第1页
2025届山西省西安中学高二上数学期末综合测试模拟试题含解析_第2页
2025届山西省西安中学高二上数学期末综合测试模拟试题含解析_第3页
2025届山西省西安中学高二上数学期末综合测试模拟试题含解析_第4页
2025届山西省西安中学高二上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省西安中学高二上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为2的正方体中,点P在截面上(含边界),则线段的最小值等于()A. B.C. D.2.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线3.已知命题p:,,则命题p的否定为()A, B.,C., D.,4.直线与曲线相切于点,则()A. B.C. D.5.在各项都为正数的等比数列中,首项,前3项和为21,则()A.84 B.72C.33 D.1896.下列函数的求导正确的是()A. B.C. D.7.如图,已知四棱锥,底面ABCD是边长为4的菱形,且,E为AD的中点,,则异面直线PC与BE所成角的余弦值为()A. B.C. D.8.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-29.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.510.已知在空间直角坐标系(O为坐标原点)中,点关于x轴的对称点为点B,则z轴与平面OAB所成的线面角为()A. B.C. D.11.《九章算数》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积为3升,下面3节的容积共4升,则第五节的容积为()A.1升 B.升C.升 D.升12.两位同学课余玩一种类似于古代印度的“梵塔游戏”:有3个柱子甲、乙、丙,甲柱上有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图).把这个盘子从甲柱全部移到乙柱游戏结束,在移动的过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则当时,和满足A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上单调递减,则实数的取值范围是________;14.在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求15.点到抛物线上的点的距离的最小值为________.16.动直线,恒过的定点是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:上的点到焦点的距离为(1)求抛物线的方程;(2)设纵截距为的直线与抛物线交于,两个不同的点,若,求直线的方程18.(12分)已知函数f(x)=(1)求函数f(x)在x=1处的切线方程;(2)求证:19.(12分)如图,在四棱锥中,底面ABCD,,,,(1)证明:;(2)当PB的长为何值时,直线AB与平面PCD所成角的正弦值为?20.(12分)如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.21.(12分)设数列是公比为正整数的等比数列,满足,,设数列满足,.(1)求数列的通项公式;(2)求证:数列是等差数列,并求数列的通项公式;(3)已知数列,设,求数列的前项和.22.(10分)如图,四棱锥中,,.(1)证明:平面;(2)在线段上是否存在一点,使直线与平面所成角的正弦值等于?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据体积法求得到平面的距离即可得【详解】由题意的最小值就是到平面的距离正方体棱长为2,则,,设到平面的距离为,由得,解得故选:B2、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.3、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.4、A【解析】直线与曲线相切于点,可得求得的导数,可得,即可求得答案.【详解】直线与曲线相切于点将代入可得:解得:由,解得:.可得,根据在上,解得:故故选:A.【点睛】本题考查了根据切点求参数问题,解题关键是掌握函数切线的定义和导数的求法,考查了分析能力和计算能力,属于中档题.5、A【解析】分析:设等比数列的公比为,根据前三项的和为列方程,结合等比数列中,各项都为正数,解得,从而可以求出的值.详解:设等比数列的公比为,首项为3,前三项的和为,,解之得或,在等比数列中,各项都为正数,公比为正数,舍去),,故选A.点睛:本题考查以一个特殊的等比数列为载体,通过求连续三项和的问题,着重考查了等比数列的通项,等比数列的性质和前项和等知识点,属于简单题.6、B【解析】对各个选项进行导数运算验证即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B7、B【解析】根据异面直线的定义找出角即为所求,再利用余弦定理解三角形即可得出.【详解】分别取BC,PB的中点F,G,连接DF,FG,DG,如图,因为E为AD的中点,四边形ABCD是菱形,所以,所以(其补角)是异面直线PC与BE所成的角因为底面ABCD是边长为4菱形,且,,由余弦定理可知,所以,所以,所以异面直线PC与BE所成角的余弦值为,故选:B8、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.9、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B10、B【解析】根据点关于坐标轴对称的性质,结合空间向量夹角公式进行求解即可.【详解】因为点关于x轴的对称点为,所以,设平面OAB的一个法向量为,则得所以,令,得,所以又z轴的一个方向向量为,设z轴与平面OAB所成的线面角为,则,所以所求的线面角为,故选:B11、B【解析】设出竹子自上而下各节的容积且为等差数列,根据上面4节的容积共3升,下面3节的容积共4升列出关于首项和公差的方程,联立即可求出首项和公差,根据求出的首项和公差,利用等差数列的通项公式即可求出第5节的容积【详解】解:设竹子自上而下各节的容积分别为:,,,,且为等差数列,根据题意得:,,即①,②,②①得:,解得,把代入①得:,则故选:B【点睛】本题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,属于中档题12、C【解析】通过写出几项,寻找规律,即可得到和满足的递推公式.【详解】若甲柱有个盘,甲柱上的盘从上往下设为,其中,,当时,将移到乙柱,只移动1次;当时,将移到乙柱,将移到乙柱,移动2次;当时,将移到丙柱,将移到丙柱,将移到乙柱,再将移到乙柱,将移到乙柱,;当时,将上面的3个移到丙柱,共次,然后将移到乙柱,再将丙柱的3个移到乙柱,共次,所以次;当时,将上面的4个移到丙柱,共次,然后将移到乙柱,再将丙柱的4个移到乙柱,共次,所以次;……以此类推,可知,故选.【点睛】主要考查了数列递推公式的求解,属于中档题.这类型题的关键是写出几项,寻找规律,从而得到对应的递推公式.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】函数,又函数在区间上单调递减∴在区间上恒成立即,解得:,当时,经检验适合题意故答案为【点睛】f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解14、(1)(2)【解析】(1)由解出,再由前项和为55求得,由等差数列通项公式即可求解;(2)先求出,再由裂项相消求和即可.【小问1详解】设公差为,由,,成等比数列,可得,即有,整理得,数列的前项和为55,可得,解得1,1,则;【小问2详解】,则15、【解析】设出抛物线上点的坐标,利用两点间距离公式,配方求出最小值.【详解】设抛物线上的点坐标,则,当时,取得最小值,且最小值为.故答案为:16、【解析】将直线方程转化为,从而可得,即可得到结果.【详解】∵,∴∴,解得:x=2,y=2.即方程(a∈R)所表示的直线恒过定点(2,2)故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用抛物线的性质即可求解.(2)设直线方程,与抛物线联立,利用韦达定理,即可求解.【详解】(1)由题设知,抛物线的准线方程为,由点到焦点的距离为,得,解得,所以抛物线的标准方程为(2)设,,显然直线的斜率存在,故设直线的方程为,联立消去得,由得,即所以,又因为,,所以,所以,即,解得,满足,所以直线的方程为18、(1)y=5x-1;(2)证明见解析【解析】(1)求出导函数,求出切线的斜率,切点坐标,然后求切线方程(2)不等式化简为.设,求出导函数,判断函数的单调性求解函数的最值,然后证明即可【详解】解:(1)的定义域为,的导数由(1)可得,则切点坐标为,所求切线方程为(2)证明:即证.设,则,由,得当时,;当时,在上单调递增,在上单调递减,(1),即不等式成立,则原不等式成立19、(1)证明见解析(2)【解析】(1)由线面垂直的判断定理证明平面PAB,再由线面垂直的性质定理即可证明;(2)以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立空间直角坐标系,设,求出平面PCD的法向量的坐标,根据直线AB与平面PCD所成角的正弦值为,利用向量法可求得,从而可求解PB的长.【小问1详解】证明:因为底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小问2详解】解:因为底面ABCD,,所以以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系,因为,,,所以,则,,所以,,,,设,则,,,设平面PCD的法向量为,则,令,则,,所以,所以,解得,则,所以当时,直线AB与平面PCD所成角正弦值为20、(1)证明见解析;(2).【解析】(1)利用面面垂直和线面垂直的性质定理可证得;由菱形边长和角度的关系可证得;利用线面垂直的判定定理可证得结论;(2)以为坐标原点建立起空间直角坐标系,利用空间向量法可求得二面角的余弦值.详解】(1)平面平面,平面平面,且平面,平面,平面,,四边形为菱形且为中点,,又,,又,,平面,,平面.(2)以为坐标原点可建立如下图所示的空间直角坐标系,设,则,,,,,,则,,,设平面的法向量,则,令,则,,,设平面的法向量,则,令,则,,,,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面垂直关系的证明、空间向量法求解二面角的问题;涉及到面面垂直的性质定理、线面垂直的判定与性质定理的应用,属于常考题型.21、(1)(2)证明见解析,(3)【解析】(1)根据等比数列列出方程组求解首项、公比即可得解;(2)化简后得,可证明数列是等差数列,即可得出,再求出即可;(3)利用错位相减法求出数列的和.【小问1详解】设公比为,由条件可知,,所以;【小问2详解】,又,所以,所以数列是以为首项,为公差等差数列,所以,所以.【小问3详解】,,两式相减可得,,.22、(1)详解解析;(2)存在.【解析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论