2025届山西省长治市上党联盟高二数学第一学期期末学业水平测试试题含解析_第1页
2025届山西省长治市上党联盟高二数学第一学期期末学业水平测试试题含解析_第2页
2025届山西省长治市上党联盟高二数学第一学期期末学业水平测试试题含解析_第3页
2025届山西省长治市上党联盟高二数学第一学期期末学业水平测试试题含解析_第4页
2025届山西省长治市上党联盟高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省长治市上党联盟高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数,则()A B.C. D.2.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.3.过两点和的直线的斜率为()A. B.C. D.4.已知空间四个点,,,,则直线AD与平面ABC所成的角为()A. B.C. D.5.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.136.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.7.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.8.已知集合,,则()A. B.C. D.9.已知直线的斜率为1,直线的倾斜角比直线的倾斜角小15°,则直线的斜率为()A.-1 B.C. D.110.已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A. B.C. D.11.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C的离心率为,面积为6π,则椭圆C的标准方程为()A. B.C. D.12.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用组成所有没有重复数字的五位数中,满足与相邻并且与不相邻的五位数共有____________个.(结果用数值表示)14.已知的顶点A(1,5),边AB上的中线CM所在的直线方程为,边AC上的高BH所在直线方程为,求(1)顶点C的坐标;(2)直线BC的方程;15.已知圆锥的母线长为cm,其侧面展开图是一个半圆,则底面圆的半径为____cm.16.某校学生在研究折纸实验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数与纸的长边和厚度有关系:.现有一张长边为30cm,厚度为0.05cm的矩形纸,根据以上信息,当对折完4次时,的最小值为________;该矩形纸最多能对折________次.(参考数值:,)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?18.(12分)已知数列满足,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求的最小值及此时的值.19.(12分)在棱长为的正方体中,、分别为线段、的中点.(1)求平面与平面所成锐二面角的余弦值;(2)求直线到平面的距离.20.(12分)已知直线:,直线:(1)若,之间的距离为3,求c的值:(2)求直线截圆C:所得弦长21.(12分)已知椭圆过点,且离心率.(1)求椭圆的方程;(2)设直交椭圆于两点,判断点与以线段为直径的圆的位置关系,并说明理由.22.(10分)已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据复数的乘法运算即可求解.【详解】由,故选:A2、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C3、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D4、A【解析】根据向量法求出线面角即可.【详解】设平面的法向量为,直线AD与平面ABC所成的角为令,则则故选:A【点睛】本题主要考查了利用向量法求线面角,属于中档题.5、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B6、D【解析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D7、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A8、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B9、C【解析】根据直线的斜率求出其倾斜角可求得答案.【详解】设直线的倾斜角为,所以,因为,所以,因为直线的倾斜角比直线的倾斜角小15°,所以直线的倾斜角为,则直线的斜率为.故选:C10、B【解析】利用直线与平面,平面与平面的位置关系判断2个命题的真假,再利用复合命题的真值表判断选项的正误即可【详解】,表示两条不同直线,,表示两个不同平面:若,,则也可能,也可能与相交,所以是假命题,为真命题;:令直线的方向向量为,直线的方向向量为,若,则,则,所以是真命题,所以为假命题;所以为假命题,是真命题,为假命题,是真命题,所以为假命题故选:11、D【解析】设椭圆的方程为,根据题意得到和,求得的值,即可求解.【详解】由题意,椭圆的焦点在轴上,可设椭圆的方程为,因为椭圆C的离心率为,可得,又由,即,解得,又因为椭圆的面积为,可得,即,联立方程组,解答,所以椭圆方程为.故选:D.12、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,先利用捆绑法排列和,再利用插空法排列和,即可得答案.【详解】因为满足与相邻并且与不相邻,则将捆绑,内部排序得,再对和全排列得,利用插空法将和插空得,所以满足题意得五位数有.故答案为:14、(1);(2).【解析】(1)设出点C的坐标,进而根据点C在中线上及求得答案;(2)设出点B的坐标,进而求出点M的坐标,然后根据中线的方程及求出点B的坐标,进而求出直线BC的方程.【小问1详解】设C点的坐标为,则由题知,即.【小问2详解】设B点的坐标为,则中点M坐标代入中线CM方程则由题知,即,又,则,所以直线BC方程为.15、【解析】根据题意可知圆锥侧面展开图的半圆的半径为cm,再根据底面圆的周长等于侧面的弧长,即可求出结果.【详解】设底面圆的半径为,由于侧面展开图是一个半圆,又圆锥的母线长为cm,所以该半圆的半径为cm,所以,所以(cm).故答案为:.16、①.64②.6【解析】利用即可求解,利用和换底公式进行求解.【详解】令,则,则,即,即当对折完4次时,最小值为;由题意,得,,则,所以该矩形纸最多能对折6次.故答案为:64,6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)四月后20天总利润更大【解析】(Ⅰ)根据众数的定义直接可求出众为255.利用平均数的公式可以求出平均数.根据给定的分组,通过计算完成频率分布直方图(Ⅱ)设订单中百合花需求量为(支),由(Ⅰ)中频率分布直方图,可以求出可能取值、每个可能取值相应频率,每个可能取值相应的天数.分别求出空运250支,255支百合花时,销售总利润的大小,进行比较,得出结论【详解】解:(Ⅰ)四月前10天订单中百合需求量众数为255,平均数频率分布直方图补充如下:(Ⅱ)设订单中百合花需求量为(支),由(Ⅰ)中频率分布直方图,可能取值为235,245,255,265,相应频率分别为0.1,0.3,0.4,0.2,∴20天中相应的天数为2天,6天,8天,4天.①若空运250支,当日利润为,,当日利润为,,当日利润为,,当日利润为,20天总利润为元.②若空运255支,当日利润为,,当日利润为,,当日利润为,,当日利润为,20天总利润为元.∵,∴每天空运250支百合花四月后20天总利润更大.【点睛】本题考查了众数、平均数、频率分布直方图;重点考查了学生通过阅读,提取有用信息,用数学知识解决实际生活问题的能力18、(1)(2);或【解析】(1)由题意得到数列为公差为的等差数列,结合,,成等比数列,列出方程求得,即可得到数列的通项公式;(2)由,得到时,,当时,,当时,,结合等差数列的求和公式,即可求解.【小问1详解】解:由题意,数列满足,所以数列为公差为的等差数列,又由,,成等比数列,可得,即,解得,所以数列的通项公式.【小问2详解】解:由数列的通项公式,令,即,解得,所以当时,;当时,;当时,,所以当或时,取得最小值,最小值为.19、(1);(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值;(2)证明出平面,利用空间向量法可求得直线到平面的距离.【小问1详解】解:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,,因此,平面与平面所成锐二面角的余弦值为.【小问2详解】解:,则,所以,,因为平面,所以,平面,,所以,直线到平面的距离为.20、(1)或(2)【解析】(1)根据两条平行直线的距离公式列方程,化简求得的值.(2)利用弦长公式求得.【小问1详解】因为两条平行直线:与:间的距离为3,所以解得或.【小问2详解】圆C:,圆心为,半径为.圆心到直线的距离为,所以弦长21、(1)(2)点G在以AB为直径的圆外【解析】解法一:(Ⅰ)由已知得解得所以椭圆E的方程为(Ⅱ)设点AB中点为由所以从而.所以.,故所以,故G在以AB为直径的圆外解法二:(Ⅰ)同解法一.(Ⅱ)设点,则由所以从而所以不共线,所以锐角.故点G在以AB为直径的圆外考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论