下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弦图模型巩固练习1.在Rt△ABC中,∠ACB=90°,BC=a,AC=b.AB=c,将Rt△ABC绕点O依次旋转90°、180°和270°,构成的图形如图所示,该图是我国古代数学家赵爽制作的“勾股圆方图”,也被称作“赵爽弦图”,它是我国最早对勾股定理证明的记载,也成为了2002年在北京召开的国际数学家大会的会标设计的主要依据.(1)请你利用这个图形证明勾股定理.(2)请你利用这个图形说明a2+b2≥2ab,并说明等号成立的条件.(3)设a=x,b=y,代入a2+b2≥2根据你得到的结论解决下面的问题:长为x,宽为y的矩形,其周长为16,请问当x,y取何值时,该矩形面积最大?最大面积是多少?2.如图1,在计算阴影部分面积时,我们可以用边长为a的大正方形面积减去边长为b的小正方面积,即:S=a2﹣b2.我们也可以把图中阴影部分剪下一个小长方形,然后按图2把阴影部分拼接成一个长为(a+b),宽为(a﹣b)的长方形来计算面积,即:S=(a+b)(a﹣b),因为阴影部分的面积相等,我们可以得到a2﹣b2=(a+b)(a﹣b),这恰好验证了平方差公式.(1)图3中最大正方形的面积算法也可以验证一个乘法公式,请用含a和b的代数式写出这个公式:.(2)图4是著名的“赵爽弦图”,它是由四个形状大小完全一致的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,我国古代数学家赵爽利用此图验证了直角三角形的斜边c和两直角边a和b之间存在一个固定的等量关系,请你求出关于a、b、c的关系式.3.教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c),也可以表示为4×12ab+(a﹣b)2,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)如图③,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.(3)试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2,画在如图4的网格中,并标出字母a,b所表示的线段.4.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求(a+b)2的值.5.公元3世纪初,我国数学家赵爽证明勾股定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外做正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论.拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是.6.通过整式乘法的学习,我们进一步了解了利用图形面积来说明法则、公式等的正确性的方法,例如利用图甲可以对平方差公式(a+b)(a﹣b)=a2﹣b2给予解释.图乙中的△ABC是一个直角三角形,∠C=90°,人们很早就发现直角三角形的三边a,b,c满足a2+b2=c2的关系.图丙是2002年国际数学家大会的会徽,选定的是我国古代数学家赵爽用来证明勾股定理的弦图,弦图是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,求出(a+b)2的值.7.下图是“弦图”,请将“弦图”中的四个直角三角形通过你所学过的图形变换,在以下方格纸中设计另两个不同的图案.画图要求:(1)每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠;(2)所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.8.图1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度产业园租赁及产业孵化基地建设合同4篇
- 2024隗蓉与物流公司关于货物运输的合同
- 2025年度拆除工程风险评估分包合同示范文本4篇
- 2025年LED路灯节能升级项目购销及维护合同3篇
- 2025年度商业街租赁合同标准范本4篇
- 2025年度彩钢房拆除与装配式建筑推广合同范本3篇
- 2025年度厂房建设项目环境影响评价合同范本4篇
- 2024版招商引资居间合同协议书范本
- 2025年度电子游戏角色插画开发合同4篇
- 2025年度生物医药产业项目合作协议范本4篇
- 资产评估服务房屋征收项目测绘实施方案
- 2025年经济形势会议讲话报告
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- 国家安全责任制落实情况报告3篇
- 2024年度顺丰快递冷链物流服务合同3篇
- 六年级下册【默写表】(牛津上海版、深圳版)(汉译英)
- 合同签订培训
- 电工基础知识培训课程
- 铁路基础知识题库单选题100道及答案解析
- 金融AI:颠覆与重塑-深化理解AI在金融行业的实践与挑战
- 住宅楼安全性检测鉴定方案
评论
0/150
提交评论